A138106 A triangular sequence of coefficients based on the expansion of a Morse potential type function: p(x,t) = exp(x*t)*(exp(-2*t) - 2*exp(-t)).
-1, 0, -1, 2, 0, -1, -6, 6, 0, -1, 14, -24, 12, 0, -1, -30, 70, -60, 20, 0, -1, 62, -180, 210, -120, 30, 0, -1, -126, 434, -630, 490, -210, 42, 0, -1, 254, -1008, 1736, -1680, 980, -336, 56, 0, -1, -510, 2286, -4536, 5208, -3780, 1764, -504, 72, 0, -1, 1022, -5100, 11430, -15120, 13020, -7560, 2940, -720, 90, 0, -1
Offset: 1
Examples
Triangle begins as: -1; 0, -1; 2, 0, -1; -6, 6, 0, -1; 14, -24, 12, 0, -1; -30, 70, -60, 20, 0, -1; 62, -180, 210, -120, 30, 0, -1; -126, 434, -630, 490, -210, 42, 0, -1; 254, -1008, 1736, -1680, 980, -336, 56, 0, -1; -510, 2286, -4536, 5208, -3780, 1764, -504, 72, 0, -1; 1022, -5100, 11430, -15120, 13020, -7560, 2940, -720, 90, 0, -1; .....
References
- A. Messiah, Quantum mechanics, vol. 2, p. 795, fig.XVIII.2, North Holland, 1969.
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Programs
-
Mathematica
p[t_] = Exp[x*t]*(Exp[ -2*t] - 2*Exp[ -t]); Table[ ExpandAll[n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; Table[n!* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]//Flatten
Formula
p(x,t) = exp(x*t)*(exp(-2*t) - 2*exp(-t)) = Sum_{n>=0} P(x,n)*t^n/n!.
Extensions
Edited by G. C. Greubel, Apr 01 2019
Comments