A138108 A triangular sequence of coefficients based on the expansion of an Hamiltonian resolvent or Green's function: p(x,t)=Exp[x*t]/(x-t); where t is taken as the Hamiltonian variable and x as the complex variable.
1, 1, 0, 1, 2, 0, 2, 0, 1, 6, 0, 6, 0, 3, 0, 1, 24, 0, 24, 0, 12, 0, 4, 0, 1, 120, 0, 120, 0, 60, 0, 20, 0, 5, 0, 1, 720, 0, 720, 0, 360, 0, 120, 0, 30, 0, 6, 0, 1, 5040, 0, 5040, 0, 2520, 0, 840, 0, 210, 0, 42, 0, 7, 0, 1, 40320, 0, 40320, 0, 20160, 0, 6720, 0, 1680, 0, 336, 0, 56, 0, 8
Offset: 1
Examples
{1}, {1, 0, 1}, {2, 0, 2, 0, 1}, {6, 0, 6, 0, 3, 0, 1}, {24, 0, 24, 0, 12, 0, 4, 0, 1}, {120, 0, 120, 0, 60, 0, 20, 0, 5, 0, 1}, {720, 0, 720, 0, 360, 0, 120, 0, 30, 0, 6, 0, 1}, {5040, 0, 5040, 0, 2520, 0, 840, 0, 210, 0, 42, 0, 7, 0, 1}, {40320, 0, 40320, 0, 20160, 0, 6720, 0, 1680, 0, 336, 0, 56, 0, 8, 0, 1}, {362880, 0, 362880, 0, 181440, 0, 60480, 0, 15120, 0, 3024, 0, 504, 0, 72, 0, 9, 0, 1}, {3628800, 0, 3628800, 0, 1814400, 0, 604800, 0, 151200, 0, 30240, 0, 5040, 0, 720, 0, 90, 0, 10, 0, 1}
References
- A. Messiah, Quantum mechanics, vol. 2, p. 712, fig.XVIII.2, North Holland, 1969.
Programs
-
Mathematica
p[t_] = Exp[x*t]/(x - t); Table[ ExpandAll[x^(n + 1)*n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[n!* CoefficientList[( x^(n + 1)*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]), x], {n, 0, 10}]; Flatten[a]
Formula
p(x,t)=Exp[x*t]/(x-t)=sum(P(x,n)*t^n/n!,{n,0,Infinity}); Out_n,m=n!Coefficients(x^(n+1)*P(x,n))
Comments