A138109 Positive integers k whose smallest prime factor is greater than the cube root of k and strictly less than the square root of k.
6, 15, 21, 35, 55, 65, 77, 85, 91, 95, 115, 119, 133, 143, 161, 187, 203, 209, 217, 221, 247, 253, 259, 287, 299, 301, 319, 323, 329, 341, 377, 391, 403, 407, 437, 451, 473, 481, 493, 517, 527, 533, 551, 559, 583, 589, 611, 629, 649, 667, 671, 689, 697, 703
Offset: 1
Keywords
Examples
6 is a term because the smallest prime factor of 6 is 2 and 6^(1/3) = 1.817... < 2 < 2.449... = sqrt(6). From _Michael De Vlieger_, Apr 27 2024: (Start): Table of p*q where p = prime(n) and q = prime(n+k): n\k 1 2 3 4 5 6 7 8 9 10 11 ------------------------------------------------------------------- 1: 6; 2: 15, 21; 3: 35, 55, 65, 85, 95, 115; 4: 77, 91, 119, 133, 161, 203, 217, 259, 287, 301, 329; ... (End)
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a138109 n = a138109_list !! (n-1) a138109_list = filter f [1..] where f x = p ^ 2 < x && x < p ^ 3 where p = a020639 x -- Reinhard Zumkeller, Dec 17 2014
-
Mathematica
s = {}; Do[f = FactorInteger[i]; test = f[[1]][[1]]; If [test < N[i^(1/2)] && test > N[i^(1/3)], s = Union[s, {i}]], {i, 2, 2000}]; Print[s] Select[Range[1000],Surd[#,3]
Harvey P. Dale, May 10 2015 *) -
PARI
is(n)=my(f=factor(n)); f[,2]==[1,1]~ && f[1,1]^3 > n \\ Charles R Greathouse IV, Mar 28 2017
-
PARI
list(lim)=if(lim<6, return([])); my(v=List([6])); forprime(p=3,sqrtint(1+lim\=1)-1, forprime(q=p+2, min(p^2-2,lim\p), listput(v,p*q))); Set(v) \\ Charles R Greathouse IV, Mar 28 2017
-
Python
from math import isqrt from sympy import primepi, primerange def A138109(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+x+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(min(x//p,p**2)) for p in primerange(s+1))) return bisection(f,n,n) # Chai Wah Wu, Mar 05 2025
Formula
From Michael De Vlieger, Apr 27 2024: (Start)
A079047(n) = card({ q : p < q < p^2 }), p and q primes. (End)
Comments