A138134 a(n) = Sum_{i=0..n} Fibonacci(5*i).
0, 5, 60, 670, 7435, 82460, 914500, 10141965, 112476120, 1247379290, 13833648315, 153417510760, 1701426266680, 18869106444245, 209261597153380, 2320746675131430, 25737475023599115, 285432971934721700, 3165500166305537820
Offset: 0
References
- Thomas Koshy; Fibonacci and Lucas numbers with applications, Wiley,2001, p. 86.
Links
- Index entries for linear recurrences with constant coefficients, signature (12,-10,-1).
Programs
-
Maple
with(combinat):fs5:=n-> sum(fibonacci(5*k),k=0..n): seq(fs5(n),n=0..18)
-
PARI
a(n)=(fibonacci(5*n+5)+fibonacci(5*n)-5)/11 \\ Charles R Greathouse IV, Jun 11 2015
Formula
G.f.: 5*x/((x - 1)*(x^2 + 11*x - 1)). - R. J. Mathar, Dec 09 2010
a(n) = 11*a(n) + a(n-1) + 5, n > 1.
a(n) = 12*a(n-1) - 10*a(n-2) - a(n-3), n > 2.
a(n) = 1/11*(Fibonacci(5*n+5) + Fibonacci(5n) - 5).
Comments