A138135 Number of parts > 1 in the last section of the set of partitions of n.
0, 1, 1, 3, 3, 8, 8, 17, 20, 34, 41, 68, 80, 123, 153, 219, 271, 382, 469, 642, 795, 1055, 1305, 1713, 2102, 2713, 3336, 4241, 5190, 6545, 7968, 9950, 12090, 14953, 18104, 22255, 26821, 32752, 39371, 47774, 57220, 69104
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; local f, g; if n=0 or i=1 then [1, 0] else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i)); [f[1]+g[1], f[2]+g[2]+`if`(i>1, g[1], 0)] fi end: a:= n-> b(n, n)[2]-b(n-1, n-1)[2]: seq (a(n), n=1..60); # Alois P. Heinz, Apr 04 2012
-
Mathematica
a[n_] := DivisorSigma[0, n] - 1 + Sum[(DivisorSigma[0, k] - 1)*(PartitionsP[n - k] - PartitionsP[n - k - 1]), {k, 1, n - 1}]; Table[a[n], {n, 1, 42}] (* Jean-François Alcover, Jan 14 2013, from 1st formula *) Table[Length@Flatten@Select[IntegerPartitions[n], FreeQ[#, 1] &], {n, 1, 42}] (* Robert Price, May 01 2020 *)
-
PARI
a(n)=numdiv(n)-1+sum(k=1,n-1,(numdiv(k)-1)*(numbpart(n-k) - numbpart(n-k-1))) \\ Charles R Greathouse IV, Jan 14 2013
Formula
a(n) ~ exp(Pi*sqrt(2*n/3))*(2*gamma - 2 + log(6*n/Pi^2))/(8*sqrt(3)*n), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 24 2016
G.f.: Sum_{k>=1} x^(2*k)/(1 - x^k) / Product_{j>=2} (1 - x^j). - Ilya Gutkovskiy, Mar 05 2021
Comments