A138145 Palindromes formed from the reflected decimal expansion of the concatenation of 1, 1, 1 and infinite 0's.
1, 11, 111, 1111, 11111, 111111, 1110111, 11100111, 111000111, 1110000111, 11100000111, 111000000111, 1110000000111, 11100000000111, 111000000000111, 1110000000000111, 11100000000000111, 111000000000000111
Offset: 1
Examples
n .... a(n) 1 .... 1 2 .... 11 3 .... 111 4 .... 1111 5 .... 11111 6 .... 111111 7 .... 1110111 8 .... 11100111 9 .... 111000111 10 ... 1110000111 11 ... 11100000111 12 ... 111000000111 13 ... 1110000000111
Links
- Paolo Xausa, Table of n, a(n) for n = 1..995
- Index entries for linear recurrences with constant coefficients, signature (11,-10).
Crossrefs
Programs
-
Mathematica
Table[If[n < 7, (10^n - 1)/9, 111 + 111*10^(n-3)], {n, 25}] (* or *) LinearRecurrence[{11, -10}, {1, 11, 111, 1111, 11111, 111111, 1110111}, 25] (* Paolo Xausa, Aug 08 2024 *)
-
PARI
Vec(-x*(10*x^2-1)*(100*x^4+10*x^2+1)/((x-1)*(10*x-1)) + O(x^100)) \\ Colin Barker, Sep 15 2013
Formula
From Colin Barker, Sep 15 2013: (Start)
a(n) = 111+111*10^(n-3) for n>5.
a(n) = 11*a(n-1)-10*a(n-2).
G.f.: -x*(10*x^2-1)*(100*x^4+10*x^2+1) / ((x-1)*(10*x-1)). (End)
Extensions
Better definition from Omar E. Pol, Nov 16 2008
Comments