cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A147596 a(n) is the number whose binary representation is A138145(n).

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 119, 231, 455, 903, 1799, 3591, 7175, 14343, 28679, 57351, 114695, 229383, 458759, 917511, 1835015, 3670023, 7340039, 14680071, 29360135, 58720263, 117440519, 234881031, 469762055, 939524103, 1879048199, 3758096391
Offset: 1

Views

Author

Omar E. Pol, Nov 08 2008

Keywords

Crossrefs

Programs

  • Magma
    [1,3,7,15,31] cat [7*(1+2^(n-3)): n in [6..40]]; // G. C. Greubel, Oct 25 2022
    
  • Mathematica
    Join[{1,3,7,15,31}, 7*(1+2^(Range[6, 40] -3))] (* G. C. Greubel, Oct 25 2022 *)
  • PARI
    Vec(-x*(2*x^2-1)*(4*x^4+2*x^2+1)/((x-1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Sep 15 2013
    
  • SageMath
    def A147596(n): return 7*(1+2^(n-3)) -(1/8)*(63*int(n==0) +62*int(n==1) +60*int(n ==2)) -(7*int(n==3) +6*int(n==4) +4*int(n==5))
    [A147596(n) for n in range(1,40)] # G. C. Greubel, Oct 25 2022

Formula

a(n) = 7*(2^(n-3) + 1) if n >= 6. - Hagen von Eitzen, Jun 02 2009
From Colin Barker, Sep 15 2013: (Start)
a(n) = 3*a(n-1) - 2*a(n-2), for n >= 8.
G.f.: x*(1-2*x^2)*(1+2*x^2+4*x^4) / ((1-x)*(1-2*x)). (End)
E.g.f.: (7/8)*(8*exp(x) + exp(2*x)) - (1/8)*(63 + 62*x + 30*x^2) - 7*x^3/6 - x^4/4 - x^5/30. - G. C. Greubel, Oct 25 2022

Extensions

More terms from Hagen von Eitzen, Jun 02 2009

A000533 a(0)=1; a(n) = 10^n + 1, n >= 1.

Original entry on oeis.org

1, 11, 101, 1001, 10001, 100001, 1000001, 10000001, 100000001, 1000000001, 10000000001, 100000000001, 1000000000001, 10000000000001, 100000000000001, 1000000000000001, 10000000000000001
Offset: 0

Views

Author

Keywords

Comments

Also, b^n+1 written in base b, for any base b >= 2.
Also, A083318 written in base 2. - Omar E. Pol, Feb 24 2008, Dec 30 2008
Also, palindromes formed from the reflected decimal expansion of the concatenation of 1 and infinite 0's. - Omar E. Pol, Dec 14 2008
It seems that the sequence gives 'all' positive integers m such that m^4 is a palindrome. Note that a(0)^4 = 1 is a palindrome and for n > 0, a(n)^4 = (10^n + 1)^4 = 10^(4n) + 4*10^(3n) + 6*10^(2n) + 4*10^(n) + 1 is a palindrome. - Farideh Firoozbakht, Oct 28 2014
a(n)^2 starts with a(n)+1 for n >= 1. - Dhilan Lahoti, Aug 31 2015
From Peter Bala, Sep 25 2015: (Start)
The simple continued fraction expansion of sqrt(a(2*n)) = [10^n; 2*10^n, 2*10^n, ...] has period 1.
The simple continued fraction expansion of sqrt(a(6*n))/a(2*n) = [10^n - 1; 1, 10^n - 1, 10^n - 1, 1, 2*(10^n - 1), ...] has period 5.
The simple continued fraction expansion of sqrt(a(10*n))/a(2*n) = [10^(3*n) - 10^n; 10^n, 10^n, 2*(10^(3*n) - 10^n), ...] has period 3.
As n increases, these expansions have large partial quotients.
A theorem of Kuzmin in the measure theory of continued fractions says that large partial quotients are the exception in continued fraction expansions.
Empirically, we also see exceptionally large partial quotients in the continued fraction expansions of the m-th root of the numbers a(m*n), for m >= 3. For example, it appears that the continued fraction expansion of a(3*n)^(1/3) begins [10^n; 3*10^(2*n), 10^n, 4.5*10^(2*n), 0.8*10^n, ( 9*10^(2*n + 2) - 144 + 24*(2^mod(n,3) - 1) )/168, ...]. As n increases, the expansion begins with 6 large partial quotients. An example is given below. Cf. A002283, A066138 and A168624.
(End)
a(1) and a(2) are the only prime terms up to n=100000. - Daniel Arribas, Jun 04 2016
Based on factors from A001271, the first abundant number in this sequence should occur in the first M terms, where M is the double factorial M=7607!!. Is any abundant number known in this sequence? - Sergio Pimentel, Oct 04 2019
The (3^5 * 5^2 * 7^2 * 11^2 * 13^2 * 17 * 19 * 23 * 29 * 31 * 37 * 41 * 43 * 47 * 53 * 59 * 61 * 67 * 71 * 73 * 79 * 83 * 89 * 97 * 101 * 103 * 107 * 109 * 113 * 127 * 131 * 137 * 139 * 157 * 163 * 181 * 191 * 241 * 251 * 263)-th term of this sequence is an abundant number. - Jon E. Schoenfield, Nov 19 2019
The only perfect power (i.e., a perfect square, a perfect cube, and so forth) in the present sequence is a(0) by Mihăilescu's theorem (since 10^n is a perfect power not equal to 2^3 - see the links in A001597). - Marco Ripà, Feb 04 2025

Examples

			The continued fraction expansion of a(9)^(1/3) begins [1000; 3000000, 1000, 4500000, 800, 5357142, 1, 6, 14, 6, 1, 5999999, 6, 1, 12, 7, 1, ...] with 5 large partial quotients immediately following the integer part of the number. - _Peter Bala_, Sep 25 2015
		

Crossrefs

Programs

Formula

a(n) = 10^n + 1 - 0^n. - Reinhard Zumkeller, Jun 10 2003
From Paul Barry, Feb 05 2005: (Start)
G.f.: (1-10*x^2)/((1-x)*(1-10*x));
a(n) = Sum_{k=0..n} binomial(n, k)*0^(k(n-k))*10^k. (End)
a(n) = A178500(n) + 1. - Reinhard Zumkeller, May 28 2010
E.g.f.: exp(x) + exp(10*x) - 1. - Ilya Gutkovskiy, Jun 03 2016

A138146 Palindromes with 2n-1 digits formed from the reflected decimal expansion of the concatenation of 1, 1, 1 and infinite 0's.

Original entry on oeis.org

1, 111, 11111, 1110111, 111000111, 11100000111, 1110000000111, 111000000000111, 11100000000000111, 1110000000000000111, 111000000000000000111, 11100000000000000000111
Offset: 1

Views

Author

Omar E. Pol, Mar 29 2008, May 18 2008

Keywords

Comments

Bisection of A138145.
a(n) is also A147597(n) written in base 2. [Omar E. Pol, Nov 08 2008]

Examples

			n ............ a(n)
1 ............. 1
2 ............ 111
3 ........... 11111
4 .......... 1110111
5 ......... 111000111
6 ........ 11100000111
7 ....... 1110000000111
8 ...... 111000000000111
9 ..... 11100000000000111
10 ... 1110000000000000111
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits@ If[n < 4, ConstantArray[1, 2 n - 1], Join[#, ConstantArray[0, 2 n - 7], #]] &@ ConstantArray[1, 3], {n, 14}] (* or *)
    Rest@ CoefficientList[Series[-x (10 x - 1) (10 x + 1) (100 x^2 + 10 x + 1)/((x - 1) (100 x - 1)), {x, 0, 14}], x] (* Michael De Vlieger, Nov 25 2016 *)
  • PARI
    Vec(-x*(10*x-1)*(10*x+1)*(100*x^2+10*x+1)/((x-1)*(100*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013

Formula

From Colin Barker, Sep 16 2013: (Start)
a(n) = 111 + 111*100^(n-2) for n>3.
a(n) = 101*a(n-1) - 100*a(n-2) for n>5.
G.f.: -x*(10*x-1)*(10*x+1)*(100*x^2+10*x+1) / ((x-1)*(100*x-1)). (End)

Extensions

Better definition from Omar E. Pol, Nov 16 2008

A138120 Concatenation of n digits 1, 2n-1 digits 0 and n digits 1.

Original entry on oeis.org

101, 1100011, 11100000111, 111100000001111, 1111100000000011111, 11111100000000000111111, 111111100000000000001111111, 1111111100000000000000011111111, 11111111100000000000000000111111111, 111111111100000000000000000001111111111
Offset: 1

Views

Author

Omar E. Pol, Apr 06 2008

Keywords

Comments

a(n) has 4n-1 digits.
a(n) is also A147539(n) written in base 2. [Omar E. Pol, Nov 08 2008]

Examples

			n ........... a(n)
1 ........... 101
2 ......... 1100011
3 ....... 11100000111
4 ..... 111100000001111
5 ... 1111100000000011111
		

Crossrefs

Programs

  • Maple
    a:= n-> parse(cat(1$n,0$(2*n-1),1$n)):
    seq(a(n), n=1..11);  # Alois P. Heinz, Mar 03 2022
  • Mathematica
    Table[FromDigits[Join[PadRight[{},n,1],PadRight[{},2n-1,0], PadRight[ {},n,1]]],{n,10}] (* or *) LinearRecurrence[{11011,-10121010,110110000,-100000000},{101,1100011,11100000111,111100000001111},10] (* Harvey P. Dale, Mar 19 2016 *)
  • PARI
    Vec(x*(10001000*x^2-12100*x+101)/((x-1)*(10*x-1)*(1000*x-1)*(10000*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013
    
  • Python
    def a(n): return int("1"*n + "0"*(2*n-1) + "1"*n)
    print([a(n) for n in range(1, 11)]) # Michael S. Branicky, Mar 03 2022

Formula

G.f.: x*(10001000*x^2-12100*x+101) / ((x-1)*(10*x-1)*(1000*x-1)*(10000*x-1)). [Colin Barker, Sep 16 2013]

A138721 Concatenation of n digits 1, n digits 0 and n digits 1.

Original entry on oeis.org

101, 110011, 111000111, 111100001111, 111110000011111, 111111000000111111, 111111100000001111111, 111111110000000011111111, 111111111000000000111111111, 111111111100000000001111111111, 111111111110000000000011111111111, 111111111111000000000000111111111111
Offset: 1

Views

Author

Omar E. Pol, Mar 29 2008

Keywords

Comments

a(n) is also A145641(n) written in base 2. - Omar E. Pol, Oct 15 2008
a(n) has 3n digits. - Omar E. Pol, Nov 12 2008

Examples

			From _Omar E. Pol_, Nov 12 2008: (Start)
n         Successive digits of a(n)
1                 ( 1 0 1 )
2              ( 1 1 0 0 1 1 )
3           ( 1 1 1 0 0 0 1 1 1 )
4        ( 1 1 1 1 0 0 0 0 1 1 1 1 )
5     ( 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 )
(End)
		

Crossrefs

Programs

  • Maple
    a:= n-> parse(cat(1$n,0$n,1$n)):
    seq(a(n), n=1..14);  # Alois P. Heinz, Mar 03 2022
  • Mathematica
    Table[(100^n + 1)*(10^n - 1)/9, {n, 15}] (* Paolo Xausa, Aug 02 2024 *)
  • PARI
    Vec(x*(101000*x^2-2200*x+101)/((x-1)*(10*x-1)*(100*x-1)*(1000*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013

Formula

G.f.: x*(101000*x^2 - 2200*x + 101) / ((x-1)*(10*x-1)*(100*x-1)*(1000*x-1)). - Colin Barker, Sep 16 2013
a(n) = (100^n+1)*(10^n-1)/9. - Paolo Xausa, Aug 02 2024

A138144 Palindromes formed from the reflected decimal expansion of the concatenation of 1, 1 and infinite 0's.

Original entry on oeis.org

1, 11, 111, 1111, 11011, 110011, 1100011, 11000011, 110000011, 1100000011, 11000000011, 110000000011, 1100000000011, 11000000000011, 110000000000011, 1100000000000011, 11000000000000011, 110000000000000011
Offset: 1

Views

Author

Omar E. Pol, Mar 29 2008

Keywords

Comments

a(n) is also A147595(n) written in base 2. [From Omar E. Pol, Nov 08 2008]

Examples

			n .... a(n)
1 .... 1
2 .... 11
3 .... 111
4 .... 1111
5 .... 11011
6 .... 110011
7 .... 1100011
8 .... 11000011
9 .... 110000011
10 ... 1100000011
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{11,-10},{1,11,111,1111,11011},20] (* Harvey P. Dale, Aug 21 2016 *)
  • PARI
    Vec(-x*(10*x^2-1)*(10*x^2+1)/((x-1)*(10*x-1)) + O(x^100)) \\ Colin Barker, Sep 15 2013

Formula

a(n) = 11+11*10^(n-2) for n>3. a(n) = 11*a(n-1)-10*a(n-2). G.f.: -x*(10*x^2-1)*(10*x^2+1) / ((x-1)*(10*x-1)). - Colin Barker, Sep 15 2013

Extensions

Better definition. - Omar E. Pol, Nov 15 2008

A138826 Concatenation of 2n-1 digits 1, n digits 0 and 2n-1 digits 1.

Original entry on oeis.org

101, 11100111, 1111100011111, 111111100001111111, 11111111100000111111111, 1111111111100000011111111111, 111111111111100000001111111111111, 11111111111111100000000111111111111111
Offset: 1

Views

Author

Omar E. Pol, Apr 06 2008

Keywords

Comments

a(n) has 5n-2 digits.
a(n) is also A147540(n) written in base 2. [Omar E. Pol, Nov 08 2008]

Examples

			n ........... a(n)
1 ........... 101
2 ......... 11100111
3 ....... 1111100011111
4 ..... 111111100001111111
5 ... 11111111100000111111111
		

Crossrefs

Programs

  • Mathematica
    Table[(1000^n + 10)*(100^n - 10)/900, {n, 10}] (* Paolo Xausa, Aug 08 2024 *)
  • PARI
    Vec(x*(1100000000*x^3-2000000*x^2+888910*x+101)/((x-1)*(100*x-1)*(1000*x-1)*(100000*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013

Formula

a(n) = (10^(2n-1)-1+10^(5n-2)-10^(3n-1))/9. [R. J. Mathar, Nov 07 2008, corrected Nov 09 2008]
G.f.: x*(1100000000*x^3-2000000*x^2+888910*x+101) / ((x-1)*(100*x-1)*(1000*x-1)*(100000*x-1)). - Colin Barker, Sep 16 2013

A138119 Concatenation of n digits 1 and 2*n-1 digits 0.

Original entry on oeis.org

10, 11000, 11100000, 11110000000, 11111000000000, 11111100000000000, 11111110000000000000, 11111111000000000000000, 11111111100000000000000000, 11111111110000000000000000000, 11111111111000000000000000000000, 11111111111100000000000000000000000
Offset: 1

Views

Author

Omar E. Pol, Apr 03 2008

Keywords

Comments

a(n) has 3*n-1 digits.
a(n) is also A147538(n) written in base 2. - Omar E. Pol, Nov 08 2008.

Examples

			n ...... a(n)
1 ....... 10
2 ...... 11000
3 ..... 11100000
4 .... 11110000000
5 ... 11111000000000
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1100, -100000}, {10, 11000}, 15] (* Paolo Xausa, Feb 06 2024 *)
  • PARI
    Vec(10*x/((100*x-1)*(1000*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013

Formula

From Colin Barker, Sep 16 2013: (Start)
a(n) = 1100*a(n-1) - 100000*a(n-2).
G.f.: 10*x / ((100*x-1)*(1000*x-1)). (End)

A138147 Concatenation of n digits 1 and n digits 0.

Original entry on oeis.org

10, 1100, 111000, 11110000, 1111100000, 111111000000, 11111110000000, 1111111100000000, 111111111000000000, 11111111110000000000, 1111111111100000000000, 111111111111000000000000, 11111111111110000000000000, 1111111111111100000000000000, 111111111111111000000000000000
Offset: 1

Views

Author

Omar E. Pol, Mar 29 2008

Keywords

Comments

Also, a(n) = binary representation of A020522(n), for n>0 (see example).

Examples

			n ... A020522(n) ..... a(n)
1 ....... 2 ........... 10
2 ...... 12 .......... 1100
3 ...... 56 ......... 111000
4 ..... 240 ........ 11110000
5 ..... 992 ....... 1111100000
6 .... 4032 ...... 111111000000
7 ... 16256 ..... 11111110000000
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 136, Ex. 4.2.2. - N. J. A. Sloane, Jul 27 2012

Crossrefs

Programs

  • Magma
    [(10^(2*n) - 10^n)/9: n in [1..30]]; // Vincenzo Librandi, Apr 26 2011
    
  • Mathematica
    Table[FromDigits[Join[PadRight[{},n,1],PadRight[{},n,0]]],{n,15}] (* Harvey P. Dale, Nov 20 2011 *)
  • PARI
    Vec(10*x/((10*x-1)*(100*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013

Formula

a(n) = (10^(2*n) - 10^n)/9 = A002275(n)*10^n. - Omar E. Pol, Apr 16 2008
a(n) = 10*A109241(n-1). - Omar E. Pol, Nov 08 2008
From Colin Barker, Sep 16 2013: (Start)
a(n) = 110*a(n-1) - 1000*a(n-2).
G.f.: 10*x/((10*x-1)*(100*x-1)). (End)
From Elmo R. Oliveira, Jun 13 2025: (Start)
E.g.f.: exp(10*x)*(exp(90*x) - 1)/9.
a(n) = A276352(n)/9. (End)

A147759 Palindromes formed from the reflected decimal expansion of the infinite concatenation of 1's and 0's.

Original entry on oeis.org

1, 11, 101, 1001, 10101, 101101, 1010101, 10100101, 101010101, 1010110101, 10101010101, 101010010101, 1010101010101, 10101011010101, 101010101010101, 1010101001010101, 10101010101010101, 101010101101010101
Offset: 1

Views

Author

Omar E. Pol, Nov 11 2008

Keywords

Comments

a(k(n)) is divisible by 3 iff k(n) is defined by k(1) = 5 and k(n+1) - k(n) = A100285(n+2). - Altug Alkan, Dec 05 2015

Examples

			n .... Successive digits of a(n)
1 ............. ( 1 )
2 ............ ( 1 1 )
3 ........... ( 1 0 1 )
4 .......... ( 1 0 0 1 )
5 ......... ( 1 0 1 0 1 )
6 ........ ( 1 0 1 1 0 1 )
7 ....... ( 1 0 1 0 1 0 1 )
8 ...... ( 1 0 1 0 0 1 0 1 )
9 ..... ( 1 0 1 0 1 0 1 0 1 )
10 ... ( 1 0 1 0 1 1 0 1 0 1 )
		

Crossrefs

Programs

  • Magma
    I:=[1,11,101,1001]; [n le 4 select I[n] else 11*Self(n-1)-20*Self(n-2)+110*Self(n-3)-100*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 05 2015
  • Mathematica
    CoefficientList[Series[x/((1 - x) (1 - 10 x) (1 + 10 x^2)),{x, 0, 20}], x] (* Vincenzo Librandi, Dec 05 2015 *)
    LinearRecurrence[{11,-20,110,-100},{1,11,101,1001},30] (* Harvey P. Dale, Apr 10 2022 *)
  • PARI
    Vec(x/((1-x)*(1-10*x)*(1+10*x^2)) + O(x^30)) \\ Michel Marcus, Dec 05 2015
    

Formula

From R. J. Mathar, Feb 20 2009: (Start)
a(n) = 11*a(n-1)-20*a(n-2)+110*a(n-3)-100*a(n-4).
G.f.: x/((1-x)*(1-10*x)*(1+10*x^2)). (End)
E.g.f.: (exp(x)*(10*exp(9*x) - 1) - 9*cos(sqrt(10)*x))/99. - Stefano Spezia, Oct 12 2024
Showing 1-10 of 12 results. Next