A020522
a(n) = 4^n - 2^n.
Original entry on oeis.org
0, 2, 12, 56, 240, 992, 4032, 16256, 65280, 261632, 1047552, 4192256, 16773120, 67100672, 268419072, 1073709056, 4294901760, 17179738112, 68719214592, 274877382656, 1099510579200, 4398044413952, 17592181850112, 70368735789056, 281474959933440
Offset: 0
n=5: a(5) = 4^5 - 2^5 = 1024 - 32 = 992 -> '1111100000'.
- Vincenzo Librandi, Table of n, a(n) for n = 0..170
- M. Archibald, A. Blecher, A. Knopfmacher, and M. E. Mays, Inversions and Parity in Compositions of Integers, J. Int. Seq., Vol. 23 (2020), Article 20.4.1.
- Tom Copeland, The Kervaire-Milnor formula
- John Elias, Illustration of initial terms: Twin 2^n hexagonal numbers
- L. H. Harper, Optimal Assignment of Numbers to Vertices, J. SIAM 12(1), p. 131--135, March 1964; alternative link.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- The Sixtieth William Lowell Putnam Mathematical Competition, Question A6, Amer. Math. Monthly 107 (Oct 2000), 721-732; see p. 725.
- Index entries for linear recurrences with constant coefficients, signature (6,-8).
Ratio of successive terms of
A028365.
-
a020522 = (* 2) . a006516 -- Reinhard Zumkeller, Dec 15 2015
-
[4^n - 2^n: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
-
A020522:=n->4^n-2^n; seq(A020522(n), n=0..50); # Wesley Ivan Hurt, Nov 29 2013
-
Table[4^n - 2^n, {n, 40}] (* or *) LinearRecurrence[{6, -8}, {0, 2}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2012 *)
-
a(n)=4^n-2^n \\ Charles R Greathouse IV, Jan 30 2012
-
def A020522(n): return (1<Chai Wah Wu, Mar 10 2025
-
[4^n - 2^n for n in range(0,23)] # Zerinvary Lajos, Jun 05 2009
A135577
Numbers that have only the digit "1" as first, central and final digit. For numbers with 5 or more digits the rest of digits are "0".
Original entry on oeis.org
1, 111, 10101, 1001001, 100010001, 10000100001, 1000001000001, 100000010000001, 10000000100000001, 1000000001000000001, 100000000010000000001, 10000000000100000000001, 1000000000001000000000001, 100000000000010000000000001, 10000000000000100000000000001
Offset: 1
----------------------------
n ............ a(n)
----------------------------
1 ............. 1
2 ............ 111
3 ........... 10101
4 .......... 1001001
5 ......... 100010001
6 ........ 10000100001
7 ....... 1000001000001
8 ...... 100000010000001
9 ..... 10000000100000001
10 ... 1000000001000000001
-
Join[{1}, LinearRecurrence[{111, -1110, 1000}, {111, 10101, 1001001}, 25]] (* G. C. Greubel, Oct 19 2016 *)
Join[{1},Table[FromDigits[Join[{1},PadRight[{},n,0],{1},PadRight[{},n,0],{1}]],{n,0,10}]] (* Harvey P. Dale, Aug 15 2022 *)
-
Vec(-x*(2000*x^3-1110*x^2+1)/((x-1)*(10*x-1)*(100*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013
A138118
Concatenation of 2n-1 digits 1 and n digits 0.
Original entry on oeis.org
10, 11100, 11111000, 11111110000, 11111111100000, 11111111111000000, 11111111111110000000, 11111111111111100000000, 11111111111111111000000000, 11111111111111111110000000000
Offset: 1
n .......... a(n)
1 ........... 10
2 ......... 11100
3 ....... 11111000
4 ..... 11111110000
5 ... 11111111100000
-
FromDigits/@Table[Join[PadRight[{},2n-1,1],PadRight[{},n,0]],{n,15}] (* Harvey P. Dale, Dec 09 2011 *)
A109241
Expansion of 1/((1-10*x)*(1-100*x)).
Original entry on oeis.org
1, 110, 11100, 1111000, 111110000, 11111100000, 1111111000000, 111111110000000, 11111111100000000, 1111111111000000000, 111111111110000000000, 11111111111100000000000, 1111111111111000000000000, 111111111111110000000000000, 11111111111111100000000000000
Offset: 0
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
-
[10^(2*n+1)/9-10^n/9: n in [0..40]]; // Vincenzo Librandi, Feb 22 2016
-
A109241 := proc(n)(10^(2*n+1)-10^n)/9 ; end proc:
seq(A109241(n),n=0..20) ; # R. J. Mathar, Mar 21 2011
-
Table[(10^(2*n+1)-10^n)/9, {n, 0, 100}] (* Robert Price, Feb 21 2016 *)
CoefficientList[Series[1/((1 - 100 x) (1 - 10 x)), {x, 0, 33}], x] (* Vincenzo Librandi, Feb 22 2016 *)
-
a(n)=10^(2*n+1)/9-10^n/9 \\ Charles R Greathouse IV, Oct 07 2015
A138119
Concatenation of n digits 1 and 2*n-1 digits 0.
Original entry on oeis.org
10, 11000, 11100000, 11110000000, 11111000000000, 11111100000000000, 11111110000000000000, 11111111000000000000000, 11111111100000000000000000, 11111111110000000000000000000, 11111111111000000000000000000000, 11111111111100000000000000000000000
Offset: 1
n ...... a(n)
1 ....... 10
2 ...... 11000
3 ..... 11100000
4 .... 11110000000
5 ... 11111000000000
-
LinearRecurrence[{1100, -100000}, {10, 11000}, 15] (* Paolo Xausa, Feb 06 2024 *)
-
Vec(10*x/((100*x-1)*(1000*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013
A276352
a(n) = 100^n - 10^n.
Original entry on oeis.org
0, 90, 9900, 999000, 99990000, 9999900000, 999999000000, 99999990000000, 9999999900000000, 999999999000000000, 99999999990000000000, 9999999999900000000000, 999999999999000000000000, 99999999999990000000000000, 9999999999999900000000000000, 999999999999999000000000000000
Offset: 0
Original entry on oeis.org
10, 1010, 1100, 1119, 1339, 1519, 3139, 5119, 8899, 27799, 46699, 48499, 50559, 55059, 64699, 72799, 84499, 100110, 101010, 101100, 110010, 110100, 111000, 111229, 112129, 117799, 121129, 136699, 147499, 163699, 168199, 171799, 174499, 177199, 186199
Offset: 1
1339 is a term because A045876(1339) = A045876(1340).
See 2nd comment. As 27799 is in the sequence, we can see S = 27, D = 7 and N = 99. Now all permutations S' (distinct) of S without leading zeros give terms. They are 72, giving term 72799. - _David A. Corneth_, Sep 18 2016
Showing 1-7 of 7 results.
Comments