cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Carauleanu Marc

Carauleanu Marc's wiki page.

Carauleanu Marc has authored 3 sequences.

A276352 a(n) = 100^n - 10^n.

Original entry on oeis.org

0, 90, 9900, 999000, 99990000, 9999900000, 999999000000, 99999990000000, 9999999900000000, 999999999000000000, 99999999990000000000, 9999999999900000000000, 999999999999000000000000, 99999999999990000000000000, 9999999999999900000000000000, 999999999999999000000000000000
Offset: 0

Author

Carauleanu Marc, Aug 31 2016

Keywords

Crossrefs

Programs

Formula

a(n) = floor((1000^n)/(10^n + 1)).
a(n) = A002283(n)*A011557(n).
a(n) = 9*A138147(n), for n>0.
a(n) = A168624(n) - 1.
a(n) = Sum_{k=1..n} 9*10^(2n-k).
a(n) = ((10^n)*A002283(2n))/(10^n + 1).
From Chai Wah Wu, Sep 01 2016: (Start)
a(n) = 110*a(n-1) - 1000*a(n-2) for n > 1.
G.f.: 90*x/((10*x - 1)*(100*x - 1)). (End)
E.g.f.: exp(10*x)*(exp(90*x) - 1). - Elmo R. Oliveira, Aug 14 2024

A272006 a(n) = A003617(n) - A062397(n-1).

Original entry on oeis.org

0, 0, 0, 8, 6, 2, 2, 18, 6, 6, 18, 2, 38, 36, 30, 36, 60, 2, 2, 50, 38, 116, 8, 116, 6, 12, 66, 102, 330, 318, 56, 32, 48, 60, 192, 68, 66, 42, 132, 2, 120, 108, 62, 56, 30, 8, 120, 32, 192, 8, 150, 120, 326, 170, 30, 20, 2, 278, 158, 18, 6, 92, 446, 120, 56, 48, 48, 48, 98, 8, 32, 272, 38, 78, 206
Offset: 1

Author

Carauleanu Marc, Jul 13 2016

Keywords

Examples

			For n=4, the smallest 4-digit prime is 1009, and 10^(4-1) + 1 = 1001, so a(4) = 1009 - 1001 = 8. - _Michael B. Porter_, Aug 01 2016
		

Crossrefs

Programs

  • Mathematica
    Table[NextPrime[#] - (# + 1) &[10^(n - 1)], {n, 75}] (* Michael De Vlieger, Jul 13 2016 *)
  • PARI
    a(n) = nextprime(10^(n-1)) - (10^(n-1) +  1); \\ Michel Marcus, Jul 28 2016

Formula

a(n) = A033873(n-1) - 1. - Michel Marcus, Jul 28 2016

A261806 a(n) = Sum from "least x such that prime(x) has n digits" to "the number of primes with n digits" of the difference between prime(k) and k.

Original entry on oeis.org

7, 474, 42311, 3558614, 300169143, 25814402881, 2261786350515, 200839375217041, 18042305628036066, 1636922369808190765, 149754058084293423958, 13797718194530764325852, 1279006935910516590640721, 119184789951429474863414128, 11157358746329927416919291238, 1048709967153503078344158238498
Offset: 1

Author

Carauleanu Marc, Jul 09 2016

Keywords

Examples

			As 2, 3, 5, and 7 are the only primes less than 10, A006879(1) = 4 and as 1 is the least number such that prime(1) has 1 digit, A090226(1) = 1. Therefore a(1) = Sum_{k=1..4} prime(k)-k = (2-1) + (3-2) + (5-3) + (7-4) = 1 + 1 + 2 + 3 = 7.
		

Crossrefs

Formula

a(n) = Sum_{k=A090226(n)..A006879(n)} prime(k)-k

Extensions

a(7)-a(16) from Lucas A. Brown, Oct 21 2024