A138146
Palindromes with 2n-1 digits formed from the reflected decimal expansion of the concatenation of 1, 1, 1 and infinite 0's.
Original entry on oeis.org
1, 111, 11111, 1110111, 111000111, 11100000111, 1110000000111, 111000000000111, 11100000000000111, 1110000000000000111, 111000000000000000111, 11100000000000000000111
Offset: 1
n ............ a(n)
1 ............. 1
2 ............ 111
3 ........... 11111
4 .......... 1110111
5 ......... 111000111
6 ........ 11100000111
7 ....... 1110000000111
8 ...... 111000000000111
9 ..... 11100000000000111
10 ... 1110000000000000111
-
Table[FromDigits@ If[n < 4, ConstantArray[1, 2 n - 1], Join[#, ConstantArray[0, 2 n - 7], #]] &@ ConstantArray[1, 3], {n, 14}] (* or *)
Rest@ CoefficientList[Series[-x (10 x - 1) (10 x + 1) (100 x^2 + 10 x + 1)/((x - 1) (100 x - 1)), {x, 0, 14}], x] (* Michael De Vlieger, Nov 25 2016 *)
-
Vec(-x*(10*x-1)*(10*x+1)*(100*x^2+10*x+1)/((x-1)*(100*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013
A135577
Numbers that have only the digit "1" as first, central and final digit. For numbers with 5 or more digits the rest of digits are "0".
Original entry on oeis.org
1, 111, 10101, 1001001, 100010001, 10000100001, 1000001000001, 100000010000001, 10000000100000001, 1000000001000000001, 100000000010000000001, 10000000000100000000001, 1000000000001000000000001, 100000000000010000000000001, 10000000000000100000000000001
Offset: 1
----------------------------
n ............ a(n)
----------------------------
1 ............. 1
2 ............ 111
3 ........... 10101
4 .......... 1001001
5 ......... 100010001
6 ........ 10000100001
7 ....... 1000001000001
8 ...... 100000010000001
9 ..... 10000000100000001
10 ... 1000000001000000001
-
Join[{1}, LinearRecurrence[{111, -1110, 1000}, {111, 10101, 1001001}, 25]] (* G. C. Greubel, Oct 19 2016 *)
Join[{1},Table[FromDigits[Join[{1},PadRight[{},n,0],{1},PadRight[{},n,0],{1}]],{n,0,10}]] (* Harvey P. Dale, Aug 15 2022 *)
-
Vec(-x*(2000*x^3-1110*x^2+1)/((x-1)*(10*x-1)*(100*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013
A138145
Palindromes formed from the reflected decimal expansion of the concatenation of 1, 1, 1 and infinite 0's.
Original entry on oeis.org
1, 11, 111, 1111, 11111, 111111, 1110111, 11100111, 111000111, 1110000111, 11100000111, 111000000111, 1110000000111, 11100000000111, 111000000000111, 1110000000000111, 11100000000000111, 111000000000000111
Offset: 1
n .... a(n)
1 .... 1
2 .... 11
3 .... 111
4 .... 1111
5 .... 11111
6 .... 111111
7 .... 1110111
8 .... 11100111
9 .... 111000111
10 ... 1110000111
11 ... 11100000111
12 ... 111000000111
13 ... 1110000000111
-
Table[If[n < 7, (10^n - 1)/9, 111 + 111*10^(n-3)], {n, 25}] (* or *)
LinearRecurrence[{11, -10}, {1, 11, 111, 1111, 11111, 111111, 1110111}, 25] (* Paolo Xausa, Aug 08 2024 *)
-
Vec(-x*(10*x^2-1)*(100*x^4+10*x^2+1)/((x-1)*(10*x-1)) + O(x^100)) \\ Colin Barker, Sep 15 2013
A138144
Palindromes formed from the reflected decimal expansion of the concatenation of 1, 1 and infinite 0's.
Original entry on oeis.org
1, 11, 111, 1111, 11011, 110011, 1100011, 11000011, 110000011, 1100000011, 11000000011, 110000000011, 1100000000011, 11000000000011, 110000000000011, 1100000000000011, 11000000000000011, 110000000000000011
Offset: 1
n .... a(n)
1 .... 1
2 .... 11
3 .... 111
4 .... 1111
5 .... 11011
6 .... 110011
7 .... 1100011
8 .... 11000011
9 .... 110000011
10 ... 1100000011
-
LinearRecurrence[{11,-10},{1,11,111,1111,11011},20] (* Harvey P. Dale, Aug 21 2016 *)
-
Vec(-x*(10*x^2-1)*(10*x^2+1)/((x-1)*(10*x-1)) + O(x^100)) \\ Colin Barker, Sep 15 2013
A138147
Concatenation of n digits 1 and n digits 0.
Original entry on oeis.org
10, 1100, 111000, 11110000, 1111100000, 111111000000, 11111110000000, 1111111100000000, 111111111000000000, 11111111110000000000, 1111111111100000000000, 111111111111000000000000, 11111111111110000000000000, 1111111111111100000000000000, 111111111111111000000000000000
Offset: 1
n ... A020522(n) ..... a(n)
1 ....... 2 ........... 10
2 ...... 12 .......... 1100
3 ...... 56 ......... 111000
4 ..... 240 ........ 11110000
5 ..... 992 ....... 1111100000
6 .... 4032 ...... 111111000000
7 ... 16256 ..... 11111110000000
- J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 136, Ex. 4.2.2. - N. J. A. Sloane, Jul 27 2012
-
[(10^(2*n) - 10^n)/9: n in [1..30]]; // Vincenzo Librandi, Apr 26 2011
-
Table[FromDigits[Join[PadRight[{},n,1],PadRight[{},n,0]]],{n,15}] (* Harvey P. Dale, Nov 20 2011 *)
-
Vec(10*x/((10*x-1)*(100*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013
A147538
Numbers whose binary representation is the concatenation of n 1's and 2n-1 digits 0.
Original entry on oeis.org
2, 24, 224, 1920, 15872, 129024, 1040384, 8355840, 66977792, 536346624, 4292870144, 34351349760, 274844352512, 2198889037824, 17591649173504, 140735340871680, 1125891316908032, 9007164895002624, 72057456598974464, 576460202547609600
Offset: 1
-
List([1..20], n-> 2^(2*n-1)*(2^n -1)); # G. C. Greubel, Jan 12 2020
-
[2^(2*n-1)*(2^n -1): n in [1..20]]; // G. C. Greubel, Jan 12 2020
-
seq(2^(2*n-1)*(2^n -1), n=1..20); # G. C. Greubel, Jan 12 2020
-
Table[FromDigits[Join[Table[1, {n}], Table[0, {2n - 1}]], 2], {n, 1, 20}] (* Stefan Steinerberger, Nov 11 2008 *)
-
vector(20, n, 2^(2*n-1)*(2^n -1)) \\ G. C. Greubel, Jan 12 2020
-
def a(n): return ((1 << n) - 1) << (2*n-1)
print([a(n) for n in range(1, 22)]) # Michael S. Branicky, Feb 24 2021
-
[2^(2*n-1)*(2^n -1) for n in (1..20)] # G. C. Greubel, Jan 12 2020
A147816
Concatenation of n digits 1 and 2(n-1) digits 0.
Original entry on oeis.org
1, 1100, 1110000, 1111000000, 1111100000000, 1111110000000000, 1111111000000000000, 1111111100000000000000, 1111111110000000000000000, 1111111111000000000000000000, 1111111111100000000000000000000, 1111111111110000000000000000000000
Offset: 1
n ...... a(n)
1 ....... 1
2 ...... 1100
3 ..... 1110000
4 .... 1111000000
5 ... 1111100000000
Cf.
A000533,
A016152,
A135577,
A138119,
A138120,
A138144,
A138145,
A138146,
A138721,
A138826,
A147757,
A147759.
-
Array[(10^#-1)*10^(2*#-2)/9 &, 20] (* or *)
LinearRecurrence[{1100, -100000}, {1, 1100}, 20] (* Paolo Xausa, Feb 27 2024 *)
-
Vec(x/((100*x-1)*(1000*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013
A369405
Context-free language 1^n.0^(2n).
Original entry on oeis.org
100, 110000, 111000000, 111100000000, 111110000000000, 111111000000000000, 111111100000000000000, 111111110000000000000000, 111111111000000000000000000, 111111111100000000000000000000, 111111111110000000000000000000000, 111111111111000000000000000000000000
Offset: 1
-
a:= n-> convert(4^n*(2^n-1), binary):
seq(a(n), n=1..15); # Alois P. Heinz, Feb 04 2024
-
Array[(10^#-1)*10^(2*#)/9 &, 20] (* or *)
LinearRecurrence[{1100, -100000}, {100, 110000}, 20] (* Paolo Xausa, Feb 27 2024 *)
-
def A369405(n): return (10**n-1)//9*10**(n<<1) # Chai Wah Wu, Feb 11 2024
Showing 1-8 of 8 results.
Comments