cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A138146 Palindromes with 2n-1 digits formed from the reflected decimal expansion of the concatenation of 1, 1, 1 and infinite 0's.

Original entry on oeis.org

1, 111, 11111, 1110111, 111000111, 11100000111, 1110000000111, 111000000000111, 11100000000000111, 1110000000000000111, 111000000000000000111, 11100000000000000000111
Offset: 1

Views

Author

Omar E. Pol, Mar 29 2008, May 18 2008

Keywords

Comments

Bisection of A138145.
a(n) is also A147597(n) written in base 2. [Omar E. Pol, Nov 08 2008]

Examples

			n ............ a(n)
1 ............. 1
2 ............ 111
3 ........... 11111
4 .......... 1110111
5 ......... 111000111
6 ........ 11100000111
7 ....... 1110000000111
8 ...... 111000000000111
9 ..... 11100000000000111
10 ... 1110000000000000111
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits@ If[n < 4, ConstantArray[1, 2 n - 1], Join[#, ConstantArray[0, 2 n - 7], #]] &@ ConstantArray[1, 3], {n, 14}] (* or *)
    Rest@ CoefficientList[Series[-x (10 x - 1) (10 x + 1) (100 x^2 + 10 x + 1)/((x - 1) (100 x - 1)), {x, 0, 14}], x] (* Michael De Vlieger, Nov 25 2016 *)
  • PARI
    Vec(-x*(10*x-1)*(10*x+1)*(100*x^2+10*x+1)/((x-1)*(100*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013

Formula

From Colin Barker, Sep 16 2013: (Start)
a(n) = 111 + 111*100^(n-2) for n>3.
a(n) = 101*a(n-1) - 100*a(n-2) for n>5.
G.f.: -x*(10*x-1)*(10*x+1)*(100*x^2+10*x+1) / ((x-1)*(100*x-1)). (End)

Extensions

Better definition from Omar E. Pol, Nov 16 2008

A135577 Numbers that have only the digit "1" as first, central and final digit. For numbers with 5 or more digits the rest of digits are "0".

Original entry on oeis.org

1, 111, 10101, 1001001, 100010001, 10000100001, 1000001000001, 100000010000001, 10000000100000001, 1000000001000000001, 100000000010000000001, 10000000000100000000001, 1000000000001000000000001, 100000000000010000000000001, 10000000000000100000000000001
Offset: 1

Views

Author

Omar E. Pol, Feb 24 2008

Keywords

Comments

Also, equal to A135576(n), written in base 2.
Essentially the same as A066138. - R. J. Mathar Apr 29 2008
a(n) has 2n-1 digits.

Examples

			----------------------------
n ............ a(n)
----------------------------
1 ............. 1
2 ............ 111
3 ........... 10101
4 .......... 1001001
5 ......... 100010001
6 ........ 10000100001
7 ....... 1000001000001
8 ...... 100000010000001
9 ..... 10000000100000001
10 ... 1000000001000000001
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, LinearRecurrence[{111, -1110, 1000}, {111, 10101, 1001001}, 25]] (* G. C. Greubel, Oct 19 2016 *)
    Join[{1},Table[FromDigits[Join[{1},PadRight[{},n,0],{1},PadRight[{},n,0],{1}]],{n,0,10}]] (* Harvey P. Dale, Aug 15 2022 *)
  • PARI
    Vec(-x*(2000*x^3-1110*x^2+1)/((x-1)*(10*x-1)*(100*x-1))  + O(x^100)) \\ Colin Barker, Sep 16 2013

Formula

a(n) = A135576(n), written in base 2.
Also, a(1)=1, for n>1; a(n)=(concatenation of 1, n-2 digits 0, 1, n-2 digits 0 and 1).
From Colin Barker, Sep 16 2013: (Start)
a(n) = 1 + 10^(n-1) + 100^(n-1) for n>1.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>4.
G.f.: x*(2000*x^3 - 1110*x^2 + 1)/((1-x)*(10*x-1)*(100*x-1)). (End)
E.g.f.: (-111 - 200*x + 100*exp(x) + 10*exp(10*x) + exp(100*x))/100. - Elmo R. Oliveira, Jun 13 2025

A138120 Concatenation of n digits 1, 2n-1 digits 0 and n digits 1.

Original entry on oeis.org

101, 1100011, 11100000111, 111100000001111, 1111100000000011111, 11111100000000000111111, 111111100000000000001111111, 1111111100000000000000011111111, 11111111100000000000000000111111111, 111111111100000000000000000001111111111
Offset: 1

Views

Author

Omar E. Pol, Apr 06 2008

Keywords

Comments

a(n) has 4n-1 digits.
a(n) is also A147539(n) written in base 2. [Omar E. Pol, Nov 08 2008]

Examples

			n ........... a(n)
1 ........... 101
2 ......... 1100011
3 ....... 11100000111
4 ..... 111100000001111
5 ... 1111100000000011111
		

Crossrefs

Programs

  • Maple
    a:= n-> parse(cat(1$n,0$(2*n-1),1$n)):
    seq(a(n), n=1..11);  # Alois P. Heinz, Mar 03 2022
  • Mathematica
    Table[FromDigits[Join[PadRight[{},n,1],PadRight[{},2n-1,0], PadRight[ {},n,1]]],{n,10}] (* or *) LinearRecurrence[{11011,-10121010,110110000,-100000000},{101,1100011,11100000111,111100000001111},10] (* Harvey P. Dale, Mar 19 2016 *)
  • PARI
    Vec(x*(10001000*x^2-12100*x+101)/((x-1)*(10*x-1)*(1000*x-1)*(10000*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013
    
  • Python
    def a(n): return int("1"*n + "0"*(2*n-1) + "1"*n)
    print([a(n) for n in range(1, 11)]) # Michael S. Branicky, Mar 03 2022

Formula

G.f.: x*(10001000*x^2-12100*x+101) / ((x-1)*(10*x-1)*(1000*x-1)*(10000*x-1)). [Colin Barker, Sep 16 2013]

A138721 Concatenation of n digits 1, n digits 0 and n digits 1.

Original entry on oeis.org

101, 110011, 111000111, 111100001111, 111110000011111, 111111000000111111, 111111100000001111111, 111111110000000011111111, 111111111000000000111111111, 111111111100000000001111111111, 111111111110000000000011111111111, 111111111111000000000000111111111111
Offset: 1

Views

Author

Omar E. Pol, Mar 29 2008

Keywords

Comments

a(n) is also A145641(n) written in base 2. - Omar E. Pol, Oct 15 2008
a(n) has 3n digits. - Omar E. Pol, Nov 12 2008

Examples

			From _Omar E. Pol_, Nov 12 2008: (Start)
n         Successive digits of a(n)
1                 ( 1 0 1 )
2              ( 1 1 0 0 1 1 )
3           ( 1 1 1 0 0 0 1 1 1 )
4        ( 1 1 1 1 0 0 0 0 1 1 1 1 )
5     ( 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 )
(End)
		

Crossrefs

Programs

  • Maple
    a:= n-> parse(cat(1$n,0$n,1$n)):
    seq(a(n), n=1..14);  # Alois P. Heinz, Mar 03 2022
  • Mathematica
    Table[(100^n + 1)*(10^n - 1)/9, {n, 15}] (* Paolo Xausa, Aug 02 2024 *)
  • PARI
    Vec(x*(101000*x^2-2200*x+101)/((x-1)*(10*x-1)*(100*x-1)*(1000*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013

Formula

G.f.: x*(101000*x^2 - 2200*x + 101) / ((x-1)*(10*x-1)*(100*x-1)*(1000*x-1)). - Colin Barker, Sep 16 2013
a(n) = (100^n+1)*(10^n-1)/9. - Paolo Xausa, Aug 02 2024

A138145 Palindromes formed from the reflected decimal expansion of the concatenation of 1, 1, 1 and infinite 0's.

Original entry on oeis.org

1, 11, 111, 1111, 11111, 111111, 1110111, 11100111, 111000111, 1110000111, 11100000111, 111000000111, 1110000000111, 11100000000111, 111000000000111, 1110000000000111, 11100000000000111, 111000000000000111
Offset: 1

Views

Author

Omar E. Pol, Mar 29 2008

Keywords

Comments

a(n) is also A147596(n) written in base 2. - Omar E. Pol, Nov 08 2008

Examples

			n .... a(n)
1 .... 1
2 .... 11
3 .... 111
4 .... 1111
5 .... 11111
6 .... 111111
7 .... 1110111
8 .... 11100111
9 .... 111000111
10 ... 1110000111
11 ... 11100000111
12 ... 111000000111
13 ... 1110000000111
		

Crossrefs

Programs

  • Mathematica
    Table[If[n < 7, (10^n - 1)/9, 111 + 111*10^(n-3)], {n, 25}] (* or *)
    LinearRecurrence[{11, -10}, {1, 11, 111, 1111, 11111, 111111, 1110111}, 25] (* Paolo Xausa, Aug 08 2024 *)
  • PARI
    Vec(-x*(10*x^2-1)*(100*x^4+10*x^2+1)/((x-1)*(10*x-1)) + O(x^100)) \\ Colin Barker, Sep 15 2013

Formula

From Colin Barker, Sep 15 2013: (Start)
a(n) = 111+111*10^(n-3) for n>5.
a(n) = 11*a(n-1)-10*a(n-2).
G.f.: -x*(10*x^2-1)*(100*x^4+10*x^2+1) / ((x-1)*(10*x-1)). (End)

Extensions

Better definition from Omar E. Pol, Nov 16 2008

A138144 Palindromes formed from the reflected decimal expansion of the concatenation of 1, 1 and infinite 0's.

Original entry on oeis.org

1, 11, 111, 1111, 11011, 110011, 1100011, 11000011, 110000011, 1100000011, 11000000011, 110000000011, 1100000000011, 11000000000011, 110000000000011, 1100000000000011, 11000000000000011, 110000000000000011
Offset: 1

Views

Author

Omar E. Pol, Mar 29 2008

Keywords

Comments

a(n) is also A147595(n) written in base 2. [From Omar E. Pol, Nov 08 2008]

Examples

			n .... a(n)
1 .... 1
2 .... 11
3 .... 111
4 .... 1111
5 .... 11011
6 .... 110011
7 .... 1100011
8 .... 11000011
9 .... 110000011
10 ... 1100000011
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{11,-10},{1,11,111,1111,11011},20] (* Harvey P. Dale, Aug 21 2016 *)
  • PARI
    Vec(-x*(10*x^2-1)*(10*x^2+1)/((x-1)*(10*x-1)) + O(x^100)) \\ Colin Barker, Sep 15 2013

Formula

a(n) = 11+11*10^(n-2) for n>3. a(n) = 11*a(n-1)-10*a(n-2). G.f.: -x*(10*x^2-1)*(10*x^2+1) / ((x-1)*(10*x-1)). - Colin Barker, Sep 15 2013

Extensions

Better definition. - Omar E. Pol, Nov 15 2008

A138147 Concatenation of n digits 1 and n digits 0.

Original entry on oeis.org

10, 1100, 111000, 11110000, 1111100000, 111111000000, 11111110000000, 1111111100000000, 111111111000000000, 11111111110000000000, 1111111111100000000000, 111111111111000000000000, 11111111111110000000000000, 1111111111111100000000000000, 111111111111111000000000000000
Offset: 1

Views

Author

Omar E. Pol, Mar 29 2008

Keywords

Comments

Also, a(n) = binary representation of A020522(n), for n>0 (see example).

Examples

			n ... A020522(n) ..... a(n)
1 ....... 2 ........... 10
2 ...... 12 .......... 1100
3 ...... 56 ......... 111000
4 ..... 240 ........ 11110000
5 ..... 992 ....... 1111100000
6 .... 4032 ...... 111111000000
7 ... 16256 ..... 11111110000000
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 136, Ex. 4.2.2. - N. J. A. Sloane, Jul 27 2012

Crossrefs

Programs

  • Magma
    [(10^(2*n) - 10^n)/9: n in [1..30]]; // Vincenzo Librandi, Apr 26 2011
    
  • Mathematica
    Table[FromDigits[Join[PadRight[{},n,1],PadRight[{},n,0]]],{n,15}] (* Harvey P. Dale, Nov 20 2011 *)
  • PARI
    Vec(10*x/((10*x-1)*(100*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013

Formula

a(n) = (10^(2*n) - 10^n)/9 = A002275(n)*10^n. - Omar E. Pol, Apr 16 2008
a(n) = 10*A109241(n-1). - Omar E. Pol, Nov 08 2008
From Colin Barker, Sep 16 2013: (Start)
a(n) = 110*a(n-1) - 1000*a(n-2).
G.f.: 10*x/((10*x-1)*(100*x-1)). (End)
From Elmo R. Oliveira, Jun 13 2025: (Start)
E.g.f.: exp(10*x)*(exp(90*x) - 1)/9.
a(n) = A276352(n)/9. (End)

A147759 Palindromes formed from the reflected decimal expansion of the infinite concatenation of 1's and 0's.

Original entry on oeis.org

1, 11, 101, 1001, 10101, 101101, 1010101, 10100101, 101010101, 1010110101, 10101010101, 101010010101, 1010101010101, 10101011010101, 101010101010101, 1010101001010101, 10101010101010101, 101010101101010101
Offset: 1

Views

Author

Omar E. Pol, Nov 11 2008

Keywords

Comments

a(k(n)) is divisible by 3 iff k(n) is defined by k(1) = 5 and k(n+1) - k(n) = A100285(n+2). - Altug Alkan, Dec 05 2015

Examples

			n .... Successive digits of a(n)
1 ............. ( 1 )
2 ............ ( 1 1 )
3 ........... ( 1 0 1 )
4 .......... ( 1 0 0 1 )
5 ......... ( 1 0 1 0 1 )
6 ........ ( 1 0 1 1 0 1 )
7 ....... ( 1 0 1 0 1 0 1 )
8 ...... ( 1 0 1 0 0 1 0 1 )
9 ..... ( 1 0 1 0 1 0 1 0 1 )
10 ... ( 1 0 1 0 1 1 0 1 0 1 )
		

Crossrefs

Programs

  • Magma
    I:=[1,11,101,1001]; [n le 4 select I[n] else 11*Self(n-1)-20*Self(n-2)+110*Self(n-3)-100*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 05 2015
  • Mathematica
    CoefficientList[Series[x/((1 - x) (1 - 10 x) (1 + 10 x^2)),{x, 0, 20}], x] (* Vincenzo Librandi, Dec 05 2015 *)
    LinearRecurrence[{11,-20,110,-100},{1,11,101,1001},30] (* Harvey P. Dale, Apr 10 2022 *)
  • PARI
    Vec(x/((1-x)*(1-10*x)*(1+10*x^2)) + O(x^30)) \\ Michel Marcus, Dec 05 2015
    

Formula

From R. J. Mathar, Feb 20 2009: (Start)
a(n) = 11*a(n-1)-20*a(n-2)+110*a(n-3)-100*a(n-4).
G.f.: x/((1-x)*(1-10*x)*(1+10*x^2)). (End)
E.g.f.: (exp(x)*(10*exp(9*x) - 1) - 9*cos(sqrt(10)*x))/99. - Stefano Spezia, Oct 12 2024

A147757 Palindromes formed from the reflected decimal expansion of the concatenation of 1, 0 and infinite digits 1.

Original entry on oeis.org

1, 11, 101, 1001, 10101, 101101, 1011101, 10111101, 101111101, 1011111101, 10111111101, 101111111101, 1011111111101, 10111111111101, 101111111111101, 1011111111111101, 10111111111111101, 101111111111111101
Offset: 1

Views

Author

Omar E. Pol, Nov 11 2008

Keywords

Comments

a(n) is also A147758(n) written in base 2.
a(A016789(n)) is divisible by 3 for n > 0. - Altug Alkan, Dec 06 2015

Examples

			n .... Successive digits of a(n)
1 ............. ( 1 )
2 ............ ( 1 1 )
3 ........... ( 1 0 1 )
4 .......... ( 1 0 0 1 )
5 ......... ( 1 0 1 0 1 )
6 ........ ( 1 0 1 1 0 1 )
7 ....... ( 1 0 1 1 1 0 1 )
8 ...... ( 1 0 1 1 1 1 0 1 )
9 ..... ( 1 0 1 1 1 1 1 0 1 )
10 ... ( 1 0 1 1 1 1 1 1 0 1 )
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{w = {1, 0}}, Which[n == 1, w = {1}, n == 2, w = {1, 1}, n == 3, AppendTo[w, 1], n >= 4, w = Join[w, Table[1, {n - 4}], Reverse@ w]]; FromDigits@ w]; Array[f, 19] (* Michael De Vlieger, Dec 05 2015 *)
    LinearRecurrence[{11,-10},{1,11,101,1001,10101},20] (* Harvey P. Dale, Aug 02 2017 *)
  • PARI
    Vec( x+11*x^2+101*x^3 -91*x^4*(-11+10*x) / ( (10*x-1)*(x-1) ) + O(x^30)) \\ Michel Marcus, Dec 05 2015

Formula

G.f.: x+11*x^2+101*x^3-91*x^4*(-11+10*x) / ( (10*x-1)*(x-1) ). - R. J. Mathar, Aug 24 2011
a(n) = 11*a(n-1) - 10*a(n-2) for n>2. Wesley Ivan Hurt, Dec 06 2015

A147540 Numbers whose binary representation is the concatenation of 2n-1 digits 1, n digits 0 and 2n-1 digits 1.

Original entry on oeis.org

5, 231, 7967, 260223, 8372735, 268306431, 8588894207, 274869551103, 8796026044415, 281474440364031, 9007194961870847, 288230341800361983, 9223371762010423295, 295147902980463788031, 9444732948147641253887
Offset: 1

Views

Author

Omar E. Pol, Nov 06 2008

Keywords

Comments

a(n) is the number whose binary representation is A138826(n).

Crossrefs

Cf. A138826.

Programs

  • GAP
    List([1..20], n-> 2^(5*n-2) -2^(3*n-1) +2^(2*n-1) -1); # G. C. Greubel, Jan 12 2020
  • Magma
    [2^(5*n-2) -2^(3*n-1) +2^(2*n-1) -1: n in [1..20]]; // G. C. Greubel, Jan 12 2020
    
  • Maple
    seq( 2^(5*n-2) -2^(3*n-1) +2^(2*n-1) -1, n=1..20); # G. C. Greubel, Jan 12 2020
  • Mathematica
    Table[FromDigits[Join[Table[1, {2n-1}], Table[0, {n}], Table[1, {2n-1}]], 2], {n,15}] (* Stefan Steinerberger, Nov 11 2008 *)
  • PARI
    vector(20, n, 2^(5*n-2) -2^(3*n-1) +2^(2*n-1) -1) \\ G. C. Greubel, Jan 12 2020
    
  • Sage
    [2^(5*n-2) -2^(3*n-1) +2^(2*n-1) -1 for n in (1..20)] # G. C. Greubel, Jan 12 2020
    

Formula

From R. J. Mathar, Nov 09 2008: (Start)
a(n) = 2^(5*n-2) - 2^(3*n-1) + 2^(2*n-1) - 1.
G.f.: x*(5 +6*x -128*x^2 +768*x^3)/((1-x)*(1-4*x)*(1-8*x)*(1-32*x)). (End)

Extensions

More terms from R. J. Mathar and Stefan Steinerberger, Nov 11 2008
Showing 1-10 of 11 results. Next