A153498
Palindromes formed from concatenation of A147759(n) and the same string A147759(n) but without its initial digit.
Original entry on oeis.org
1, 111, 10101, 1001001, 101010101, 10110101101, 1010101010101, 101001010100101, 10101010101010101, 1010110101010110101, 101010101010101010101, 10101001010101010010101
Offset: 1
n ............. a(n)
1 .............. 1
2 ............. 111
3 ............ 10101
4 ........... 1001001
5 .......... 101010101
6 ......... 10110101101
7 ........ 1010101010101
8 ....... 101001010100101
9 ...... 10101010101010101
10 .... 1010110101010110101
11 ... 101010101010101010101
======================================
Another visualization of the structure
======================================
1 .............. *
2 ............. /|\
3 ............ /.|.\
4 ........... /..|..\
5 .......... /.*.|.*.\
6 ......... /./|.|.|\.\
7 ........ /./.|.|.|.\.\
8 ....... /./..|.|.|..\.\
9 ...... /./.*.|.|.|.*.\.\
10 .... /././|.|.|.|.|\.\.\
11 ... /././.|.|.|.|.|.\.\.\
A153500
First 3 terms coincide with A152756. For n>3, a(n) is the palindromic number formed from concatenation of 1, 0, A147759(n-3), 0, A147759(n-3), 0 and 1.
Original entry on oeis.org
1, 101, 10001, 1010101, 101101101, 10101010101, 1010010100101, 101010101010101, 10101101010110101, 1010101010101010101, 101010010101010010101, 10101010101010101010101, 1010101101010101011010101, 101010101010101010101010101, 10101010010101010101001010101
Offset: 1
n ............ a(n)
1 ............. 1
2 ............ 101
3 ........... 10001
4 .......... 1010101
5 ......... 101101101
6 ........ 10101010101
7 ....... 1010010100101
8 ...... 101010101010101
9 ..... 10101101010110101
10 ... 1010101010101010101
======================================
Another visualization of the structure
======================================
1 ............. *
2 ............ /.\
3 ........... /...\
4 .......... /.*.*.\
5 ......... /./|.|\.\
6 ........ /./.|.|.\.\
7 ....... /./..|.|..\.\
8 ...... /./.*.|.|.*.\.\
9 ..... /././|.|.|.|\.\.\
10 ... /././.|.|.|.|.\.\.\
A094028
Expansion of 1/((1-x)*(1-100*x)).
Original entry on oeis.org
1, 101, 10101, 1010101, 101010101, 10101010101, 1010101010101, 101010101010101, 10101010101010101, 1010101010101010101, 101010101010101010101, 10101010101010101010101, 1010101010101010101010101, 101010101010101010101010101, 10101010101010101010101010101
Offset: 0
From _Omar E. Pol_, Dec 13 2008: (Start)
=======================
n ....... a(n)
0 ........ 1
1 ....... 101
2 ...... 10101
3 ..... 1010101
4 .... 101010101
5 ... 10101010101
======================
(End)
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.
- Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
- Robert Price, Table of n, a(n) for n = 0..999
- Kiran S. Kedlaya, The 50th William Lowell Putnam Mathematical Competition, Problem A1, Dec 02 1989.
- J. V. Leyendekkers and A.G. Shannon, Modular Rings and the Integer 3, Notes on Number Theory & Discrete Mathematics, 17 (2011), pp. 47-51.
- Robert Price, Comments on A094028 concerning Elementary Cellular Automata, Feb 21 2016.
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton.
- Stephen Wolfram, A New Kind of Science.
- Index to Elementary Cellular Automata.
- Index entries for sequences related to cellular automata.
- Index entries for linear recurrences with constant coefficients, signature (101,-100).
- Index to sequences related to Olympiads and other Mathematical Competitions.
Cf. similar sequences of the form (k^n-1)/(k-1) listed in
A269025.
-
[1+100*(100^n-1)/99 : n in [0..15]]; // Wesley Ivan Hurt, Oct 17 2015
-
A094028:=n->1+100*(100^n-1)/99: seq(A094028(n), n=0..15); # Wesley Ivan Hurt, Oct 17 2015
-
CoefficientList[Series[1/((1-x)(1-100x)),{x,0,20}],x] (* or *) Table[ FromDigits[ PadRight[{},2n-1,{1,0}]],{n,20}] (* or *) LinearRecurrence[ {101,-100},{1,101},20] (* or *) NestList[100#+1&,1,20] (* Harvey P. Dale, Apr 27 2015 *)
-
A094028(n):=1+100*(100^n-1)/99$
makelist(A094028(n),n,0,30); /* Martin Ettl, Nov 06 2012 */
-
a(n) = 1+100*(100^n-1)/99 \\ Felix Fröhlich, Oct 17 2015
-
Vec(1/((1-x)*(1-100*x)) + O(x^100)) \\ Altug Alkan, Oct 17 2015
A138721
Concatenation of n digits 1, n digits 0 and n digits 1.
Original entry on oeis.org
101, 110011, 111000111, 111100001111, 111110000011111, 111111000000111111, 111111100000001111111, 111111110000000011111111, 111111111000000000111111111, 111111111100000000001111111111, 111111111110000000000011111111111, 111111111111000000000000111111111111
Offset: 1
From _Omar E. Pol_, Nov 12 2008: (Start)
n Successive digits of a(n)
1 ( 1 0 1 )
2 ( 1 1 0 0 1 1 )
3 ( 1 1 1 0 0 0 1 1 1 )
4 ( 1 1 1 1 0 0 0 0 1 1 1 1 )
5 ( 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 )
(End)
-
a:= n-> parse(cat(1$n,0$n,1$n)):
seq(a(n), n=1..14); # Alois P. Heinz, Mar 03 2022
-
Table[(100^n + 1)*(10^n - 1)/9, {n, 15}] (* Paolo Xausa, Aug 02 2024 *)
-
Vec(x*(101000*x^2-2200*x+101)/((x-1)*(10*x-1)*(100*x-1)*(1000*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013
A147816
Concatenation of n digits 1 and 2(n-1) digits 0.
Original entry on oeis.org
1, 1100, 1110000, 1111000000, 1111100000000, 1111110000000000, 1111111000000000000, 1111111100000000000000, 1111111110000000000000000, 1111111111000000000000000000, 1111111111100000000000000000000, 1111111111110000000000000000000000
Offset: 1
n ...... a(n)
1 ....... 1
2 ...... 1100
3 ..... 1110000
4 .... 1111000000
5 ... 1111100000000
Cf.
A000533,
A016152,
A135577,
A138119,
A138120,
A138144,
A138145,
A138146,
A138721,
A138826,
A147757,
A147759.
-
Array[(10^#-1)*10^(2*#-2)/9 &, 20] (* or *)
LinearRecurrence[{1100, -100000}, {1, 1100}, 20] (* Paolo Xausa, Feb 27 2024 *)
-
Vec(x/((100*x-1)*(1000*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013
A144863
Start with 1, then at each step prepend 10 and append 01.
Original entry on oeis.org
1, 10101, 101010101, 1010101010101, 10101010101010101, 101010101010101010101, 1010101010101010101010101, 10101010101010101010101010101, 101010101010101010101010101010101
Offset: 1
-
a = {}; k = {1}; Do[x = FromDigits[k, 2]; AppendTo[a, FromDigits[RealDigits[x, 2]]]; AppendTo[k, 0]; AppendTo[k, 1]; PrependTo[k, 0]; PrependTo[k, 1], {n, 1, 100}];
Table[FromDigits[RealDigits[1/12 (-4 + 16^n), 2]], {n, 1, 10}]
a = {}; k = 1; Do[AppendTo[a, k]; k = 10000 k + 101, {n, 1, 10}]; a
Table[1/99 (-1 + 100^(-1 + 2 n)), {n, 1, 20}]
LinearRecurrence[{10001,-10000},{1,10101},20] (* Harvey P. Dale, Aug 22 2014 *)
A239577
Expansion of 1/((x-1)*(3*x-1)*(3*x^2+1)).
Original entry on oeis.org
1, 4, 10, 28, 91, 280, 820, 2440, 7381, 22204, 66430, 199108, 597871, 1794160, 5380840, 16140880, 48427561, 145287604, 435848050, 1307529388, 3922632451, 11767941640, 35303692060, 105910943320, 317733228541, 953200084204, 2859599056870, 8578795974868
Offset: 0
Ternary................Decimal
1............................1
11...........................4
101.........................10
1001........................28
10101.......................91
101101.....................280
1010101....................820
10100101..................2440
101010101.................7381
1010110101...............22204
10101010101..............66430
101010010101............199108, etc.
-
Table[(-1 + 3^(2 + n) + (-1 + (-1)^n) (-3)^((1 + n)/2))/8, {n, 0, 30}] (* Bruno Berselli, Mar 24 2014 *)
CoefficientList[Series[1/((x - 1) (3 x - 1) (3 x^2 + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 24 2014 *)
LinearRecurrence[{4,-6,12,-9},{1,4,10,28},30] (* Harvey P. Dale, Oct 04 2024 *)
Showing 1-7 of 7 results.
Comments