A144864 a(n) = (4*16^(n-1)-1)/3.
1, 21, 341, 5461, 87381, 1398101, 22369621, 357913941, 5726623061, 91625968981, 1466015503701, 23456248059221, 375299968947541, 6004799503160661, 96076792050570581, 1537228672809129301, 24595658764946068821, 393530540239137101141, 6296488643826193618261, 100743818301219097892181
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..500
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
- Index entries for linear recurrences with constant coefficients, signature (17,-16).
Crossrefs
Programs
-
Magma
[16^n/12-1/3: n in [1..20]]; // Vincenzo Librandi, Aug 03 2011
-
Mathematica
Table[1/3 (-1 + 16^(n - 1)) + 16^(n - 1), {n, 1, 17}] (* Artur Jasinski, Sep 25 2008 *) LinearRecurrence[{17,-16},{1,21},20] (* Harvey P. Dale, Jun 29 2022 *)
-
PARI
vector(66,n,(4*16^(n-1)-1)/3) \\ Joerg Arndt, Aug 19 2014
Formula
a(n) = 16^n/12 - 1/3; a(n) = 16*a(n-1) + 5, a(1)=1. - Artur Jasinski, Sep 25 2008
G.f.: x*(1+4*x) / ( (16*x-1)*(x-1) ). - R. J. Mathar, Jan 06 2011
a(n)=b such that Integral_{x=-Pi/2..Pi/2} (-1)^(n+1)*2^(2*n-3)*(cos((2*n-1)*x))/(5/4+sin(x)) dx = c+b*log(3). - Francesco Daddi, Aug 02 2011
a(n) = (2^(4*n-2)-1)/3. - Klaus Purath, Jan 31 2021
From Jianing Song, Aug 30 2022: (Start)
a(n) = A001045(4*n-2).
E.g.f.: (exp(16*x) - 4*exp(x) + 3)/12. - Stefano Spezia, Apr 18 2024
Extensions
New name from Joerg Arndt, Aug 19 2014
Comments