cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A371100 Array A read by upward antidiagonals in which the entry A(n,k) in row n and column k is defined by A(n, k) = 4^n*(6*k - 3 - 2*(-1)^n) + (4^n - 1)/3, n,k >= 1.

Original entry on oeis.org

21, 21, 45, 341, 117, 69, 341, 725, 213, 93, 5461, 1877, 1109, 309, 117, 5461, 11605, 3413, 1493, 405, 141, 87381, 30037, 17749, 4949, 1877, 501, 165, 87381, 185685, 54613, 23893, 6485, 2261, 597, 189, 1398101, 480597, 283989, 79189, 30037, 8021, 2645, 693, 213, 1398101, 2970965, 873813, 382293, 103765, 36181, 9557, 3029, 789, 237
Offset: 1

Views

Author

Antti Karttunen and Ali Sada, Apr 18 2024

Keywords

Examples

			The top left corner of the array:
n\k|      1       2       3        4        5        6        7        8
---+--------------------------------------------------------------------------
1  |     21,     45,     69,      93,     117,     141,     165,     189, ...
2  |     21,    117,    213,     309,     405,     501,     597,     693, ...
3  |    341,    725,   1109,    1493,    1877,    2261,    2645,    3029, ...
4  |    341,   1877,   3413,    4949,    6485,    8021,    9557,   11093, ...
5  |   5461,  11605,  17749,   23893,   30037,   36181,   42325,   48469, ...
6  |   5461,  30037,  54613,   79189,  103765,  128341,  152917,  177493, ...
7  |  87381, 185685, 283989,  382293,  480597,  578901,  677205,  775509, ...
8  |  87381, 480597, 873813, 1267029, 1660245, 2053461, 2446677, 2839893, ...
...
		

Crossrefs

Cf. A372351 (same terms, in different order), A372290 (sorted into ascending order, without duplicates), A372293 (odd numbers that do not occur here).
Leftmost column is A144864 duplicated, without its initial 1.
Row 1: A102603.

Programs

  • Mathematica
    A371100[n_, k_] := 4^n*(6*k - 3 - 2*(-1)^n) + (4^n - 1)/3;
    Table[A371100[n - k + 1, k], {n, 10}, {k, n}] (* Paolo Xausa, Apr 21 2024 *)
  • PARI
    up_to = 55;
    A371100sq(n,k) = 4^n*(6*k - 3 - 2*(-1)^n) + (4^n - 1)/3;
    A371100list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A371100sq((a-(col-1)),col))); (v); };
    v371100 = A371100list(up_to);
    A371100(n) = v371100[n];

Formula

A(n, k) = A007283(n)*A257852(n,k) + A079319(n).
A(n, k) = A371094(A257852(n,k)).
A(n+2, k) = 5 + 16*A(n,k).

A195156 a(n) = (16^n-1)/3.

Original entry on oeis.org

0, 5, 85, 1365, 21845, 349525, 5592405, 89478485, 1431655765, 22906492245, 366503875925, 5864062014805, 93824992236885, 1501199875790165, 24019198012642645, 384307168202282325, 6148914691236517205, 98382635059784275285, 1574122160956548404565
Offset: 0

Views

Author

Omar E. Pol, Sep 10 2011

Keywords

Comments

Numbers of A002450 that are multiples of 5. Also sequence found by reading the line from 0, in the direction 0, 5,..., in the square spiral whose edges are the Jacobsthal numbers A001045 and whose vertices are the numbers A000975. This is a semi-diagonal in the spiral.
In binary, these numbers are 101...01 (see A031982). - Alonso del Arte, May 20 2017
0 together with Jacobsthal numbers ending with the decimal digit 5. - Jianing Song, Aug 30 2022

Crossrefs

Bisection of A002450.
First quadrisection of Jacobsthal numbers A001045; the other quadrisections are A139792 (second), A144864 (third), and A141060 (fourth).

Programs

Formula

From Bruno Berselli, Sep 19 2011: (Start)
G.f.: 5*x/((1-x)*(1-16*x)).
a(n) = A002450(2n) = (16^n-1)/3.
a(n) = 5*A131865(n-1) = a(n-1) + 5*A001025(n-1) = 16*a(n-1) + 5 for n > 0. (End)
From Jianing Song, Aug 30 2022: (Start)
a(n) = A001045(4*n).
a(n+1) - a(n) = 10*A013777(n-1) = 80*A001025(n-1) for n >= 1. (End)
E.g.f.: exp(x)*(exp(15*x) - 1)/3. - Stefano Spezia, Dec 17 2022

Extensions

New sequence name suggested by Charles R Greathouse IV using Berselli's formula. - Sep 19 2011

A141060 Fourth quadrisection of Jacobsthal numbers A001045: a(n)=16a(n-1)-5.

Original entry on oeis.org

3, 43, 683, 10923, 174763, 2796203, 44739243, 715827883, 11453246123, 183251937963, 2932031007403, 46912496118443, 750599937895083, 12009599006321323, 192153584101141163, 3074457345618258603, 49191317529892137643
Offset: 0

Views

Author

Paul Curtz, Jul 30 2008

Keywords

Comments

Jacobsthal numbers ending with the decimal digit 3. - Jianing Song, Aug 30 2022

Crossrefs

The other quadrisections of A001045 are A195156 (first), A139792 (second), and A144864 (third).

Programs

Formula

a(n) = A139792(n) + A013776(n).
a(n+1) - a(n) = 10*A013709(n) = 40*A001025(n).
G.f.: (3-8*x)/((1-x)*(1-16*x)). [Colin Barker, Apr 05 2012]
a(0)=3, a(1)=43, a(n)=17*a(n-1)-16*a(n-2). - Harvey P. Dale, Mar 16 2015
From Jianing Song, Aug 30 2022: (Start)
a(n) = A001045(4*n+3).
a(n) = 10*A141032(n) + 3 = 20*A098704(n+1) + 1 = 40*A131865(n-1) + 1 for n >= 1. (End)

A139792 First quadrisection of A139763 (1, 2, 3, 4, 11, ...).

Original entry on oeis.org

1, 11, 171, 2731, 43691, 699051, 11184811, 178956971, 2863311531, 45812984491, 733007751851, 11728124029611, 187649984473771, 3002399751580331, 48038396025285291, 768614336404564651, 12297829382473034411, 196765270119568550571, 3148244321913096809131
Offset: 0

Views

Author

Paul Curtz, May 21 2008

Keywords

Crossrefs

Second quadrisection of Jacobsthal numbers A001045; the other quadrisections are A195156 (first), A144864 (third), and A141060 (fourth).

Programs

  • Magma
    [(1+2*16^n)/3: n in [0..20]]; // Vincenzo Librandi, Aug 09 2011
    
  • Mathematica
    Table[(1 + 2^(4*n+1))/3, {n,0,20}] (* G. C. Greubel, Nov 03 2018 *)
  • PARI
    vector(20, n, n--; (1 + 2^(4*n+1))/3) \\ G. C. Greubel, Nov 03 2018

Formula

a(n) = 16*a(n-1) - 5.
a(n) = 10*A131865(n) + 1.
G.f.: ( 1-6*x ) / ( (16*x-1)*(x-1) ). - R. J. Mathar, Feb 06 2011
E.g.f.: (exp(x) + 2*exp(16*x))/3. - G. C. Greubel, Nov 03 2018
From Jianing Song, Aug 30 2022: (Start)
a(n) = A001045(4*n+1).
a(n+1) - a(n) = 10*A001025(n). (End)

A372292 Numbers that occur more than once in the odd bisection of A371094.

Original entry on oeis.org

21, 117, 213, 309, 341, 405, 501, 597, 693, 789, 885, 981, 1077, 1173, 1269, 1365, 1461, 1557, 1653, 1749, 1845, 1877, 1941, 2037, 2133, 2229, 2325, 2421, 2517, 2613, 2709, 2805, 2901, 2997, 3093, 3189, 3285, 3381, 3413, 3477, 3573, 3669, 3765, 3861, 3957, 4053, 4149, 4245, 4341, 4437, 4533, 4629, 4725, 4821, 4917
Offset: 1

Views

Author

Antti Karttunen, Apr 26 2024

Keywords

Comments

Numbers that occur more than once in array A371100.

Examples

			21 is present because A371094(1) = A371094(3) = 21.
87381 is present because A371094(85) = A371094(213) = A371094(7281) = A371094(14563) = 87381.
185685 is present because A371094(469) = A371094(15473) = A371094(30947) = 185685.
		

Crossrefs

Setwise difference A372290 \ A372291.
Cf. A144864 (subsequence after its initial 1), A371094, A371100.

Programs

  • PARI
    A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
    isA372292(n) = if(!(n%2),0,my(c=0); forstep(k=1,n,2,if(A371094(k)==n,c++)); (c>1));
    
  • PARI
    search_up_to = 1398101;
    A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
    A372292list(up_to_n) = { my(v=vector((1+up_to_n)/2), x, lista=List([])); forstep(k=1,up_to_n,2,x=A371094(k); if(x <= up_to_n, v[(x+1)/2]++)); for(i=1,(1+up_to_n)/2,if(v[i]>1, listput(lista,i+i-1))); Vec(lista); };
    v372292 = A372292list(search_up_to);
    A372292(n) = v372292[n];

A144863 Start with 1, then at each step prepend 10 and append 01.

Original entry on oeis.org

1, 10101, 101010101, 1010101010101, 10101010101010101, 101010101010101010101, 1010101010101010101010101, 10101010101010101010101010101, 101010101010101010101010101010101
Offset: 1

Views

Author

Artur Jasinski, Sep 23 2008, Sep 25 2008

Keywords

Comments

Bisection of A094028. - Omar E. Pol, Nov 12 2008
a(n) is also A144864(n) written in base 2. - Omar E. Pol, Nov 13 2008
Quadrisection of A147759. - Omar E. Pol, Nov 16 2008

Crossrefs

Programs

  • Mathematica
    a = {}; k = {1}; Do[x = FromDigits[k, 2]; AppendTo[a, FromDigits[RealDigits[x, 2]]]; AppendTo[k, 0]; AppendTo[k, 1]; PrependTo[k, 0]; PrependTo[k, 1], {n, 1, 100}];
    Table[FromDigits[RealDigits[1/12 (-4 + 16^n), 2]], {n, 1, 10}]
    a = {}; k = 1; Do[AppendTo[a, k]; k = 10000 k + 101, {n, 1, 10}]; a
    Table[1/99 (-1 + 100^(-1 + 2 n)), {n, 1, 20}]
    LinearRecurrence[{10001,-10000},{1,10101},20] (* Harvey P. Dale, Aug 22 2014 *)

Formula

a(n) = (-1+100^(-1+2*n))/99.
If a(n) is interpreted as binary number, (-4+16^n)/12 gives the decimal representation of a(n).
a(n) = 10000*a(n-1)+101, n>1.
G.f.: x*(1+100*x) / ( (10000*x-1)*(x-1) ).
Showing 1-6 of 6 results.