A371100
Array A read by upward antidiagonals in which the entry A(n,k) in row n and column k is defined by A(n, k) = 4^n*(6*k - 3 - 2*(-1)^n) + (4^n - 1)/3, n,k >= 1.
Original entry on oeis.org
21, 21, 45, 341, 117, 69, 341, 725, 213, 93, 5461, 1877, 1109, 309, 117, 5461, 11605, 3413, 1493, 405, 141, 87381, 30037, 17749, 4949, 1877, 501, 165, 87381, 185685, 54613, 23893, 6485, 2261, 597, 189, 1398101, 480597, 283989, 79189, 30037, 8021, 2645, 693, 213, 1398101, 2970965, 873813, 382293, 103765, 36181, 9557, 3029, 789, 237
Offset: 1
The top left corner of the array:
n\k| 1 2 3 4 5 6 7 8
---+--------------------------------------------------------------------------
1 | 21, 45, 69, 93, 117, 141, 165, 189, ...
2 | 21, 117, 213, 309, 405, 501, 597, 693, ...
3 | 341, 725, 1109, 1493, 1877, 2261, 2645, 3029, ...
4 | 341, 1877, 3413, 4949, 6485, 8021, 9557, 11093, ...
5 | 5461, 11605, 17749, 23893, 30037, 36181, 42325, 48469, ...
6 | 5461, 30037, 54613, 79189, 103765, 128341, 152917, 177493, ...
7 | 87381, 185685, 283989, 382293, 480597, 578901, 677205, 775509, ...
8 | 87381, 480597, 873813, 1267029, 1660245, 2053461, 2446677, 2839893, ...
...
Cf.
A372351 (same terms, in different order),
A372290 (sorted into ascending order, without duplicates),
A372293 (odd numbers that do not occur here).
Leftmost column is
A144864 duplicated, without its initial 1.
-
A371100[n_, k_] := 4^n*(6*k - 3 - 2*(-1)^n) + (4^n - 1)/3;
Table[A371100[n - k + 1, k], {n, 10}, {k, n}] (* Paolo Xausa, Apr 21 2024 *)
-
up_to = 55;
A371100sq(n,k) = 4^n*(6*k - 3 - 2*(-1)^n) + (4^n - 1)/3;
A371100list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A371100sq((a-(col-1)),col))); (v); };
v371100 = A371100list(up_to);
A371100(n) = v371100[n];
A195156
a(n) = (16^n-1)/3.
Original entry on oeis.org
0, 5, 85, 1365, 21845, 349525, 5592405, 89478485, 1431655765, 22906492245, 366503875925, 5864062014805, 93824992236885, 1501199875790165, 24019198012642645, 384307168202282325, 6148914691236517205, 98382635059784275285, 1574122160956548404565
Offset: 0
-
[(16^n-1)/3:n in [0..20]]; // Vincenzo Librandi, Sep 20 2011
-
A195156:=n->(16^n-1)/3; seq(A195156(k), k=0..50); # Wesley Ivan Hurt, Oct 24 2013
-
Table[(16^n - 1)/3, {n, 0, 63}] (* Wesley Ivan Hurt, Oct 24 2013 *)
-
for(n=0,50, print1((16^n - 1)/3, ", ")) \\ G. C. Greubel, Oct 11 2017
A141060
Fourth quadrisection of Jacobsthal numbers A001045: a(n)=16a(n-1)-5.
Original entry on oeis.org
3, 43, 683, 10923, 174763, 2796203, 44739243, 715827883, 11453246123, 183251937963, 2932031007403, 46912496118443, 750599937895083, 12009599006321323, 192153584101141163, 3074457345618258603, 49191317529892137643
Offset: 0
A139792
First quadrisection of A139763 (1, 2, 3, 4, 11, ...).
Original entry on oeis.org
1, 11, 171, 2731, 43691, 699051, 11184811, 178956971, 2863311531, 45812984491, 733007751851, 11728124029611, 187649984473771, 3002399751580331, 48038396025285291, 768614336404564651, 12297829382473034411, 196765270119568550571, 3148244321913096809131
Offset: 0
A372292
Numbers that occur more than once in the odd bisection of A371094.
Original entry on oeis.org
21, 117, 213, 309, 341, 405, 501, 597, 693, 789, 885, 981, 1077, 1173, 1269, 1365, 1461, 1557, 1653, 1749, 1845, 1877, 1941, 2037, 2133, 2229, 2325, 2421, 2517, 2613, 2709, 2805, 2901, 2997, 3093, 3189, 3285, 3381, 3413, 3477, 3573, 3669, 3765, 3861, 3957, 4053, 4149, 4245, 4341, 4437, 4533, 4629, 4725, 4821, 4917
Offset: 1
21 is present because A371094(1) = A371094(3) = 21.
87381 is present because A371094(85) = A371094(213) = A371094(7281) = A371094(14563) = 87381.
185685 is present because A371094(469) = A371094(15473) = A371094(30947) = 185685.
-
A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
isA372292(n) = if(!(n%2),0,my(c=0); forstep(k=1,n,2,if(A371094(k)==n,c++)); (c>1));
-
search_up_to = 1398101;
A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
A372292list(up_to_n) = { my(v=vector((1+up_to_n)/2), x, lista=List([])); forstep(k=1,up_to_n,2,x=A371094(k); if(x <= up_to_n, v[(x+1)/2]++)); for(i=1,(1+up_to_n)/2,if(v[i]>1, listput(lista,i+i-1))); Vec(lista); };
v372292 = A372292list(search_up_to);
A372292(n) = v372292[n];
A144863
Start with 1, then at each step prepend 10 and append 01.
Original entry on oeis.org
1, 10101, 101010101, 1010101010101, 10101010101010101, 101010101010101010101, 1010101010101010101010101, 10101010101010101010101010101, 101010101010101010101010101010101
Offset: 1
-
a = {}; k = {1}; Do[x = FromDigits[k, 2]; AppendTo[a, FromDigits[RealDigits[x, 2]]]; AppendTo[k, 0]; AppendTo[k, 1]; PrependTo[k, 0]; PrependTo[k, 1], {n, 1, 100}];
Table[FromDigits[RealDigits[1/12 (-4 + 16^n), 2]], {n, 1, 10}]
a = {}; k = 1; Do[AppendTo[a, k]; k = 10000 k + 101, {n, 1, 10}]; a
Table[1/99 (-1 + 100^(-1 + 2 n)), {n, 1, 20}]
LinearRecurrence[{10001,-10000},{1,10101},20] (* Harvey P. Dale, Aug 22 2014 *)
Showing 1-6 of 6 results.
Comments