A138146
Palindromes with 2n-1 digits formed from the reflected decimal expansion of the concatenation of 1, 1, 1 and infinite 0's.
Original entry on oeis.org
1, 111, 11111, 1110111, 111000111, 11100000111, 1110000000111, 111000000000111, 11100000000000111, 1110000000000000111, 111000000000000000111, 11100000000000000000111
Offset: 1
n ............ a(n)
1 ............. 1
2 ............ 111
3 ........... 11111
4 .......... 1110111
5 ......... 111000111
6 ........ 11100000111
7 ....... 1110000000111
8 ...... 111000000000111
9 ..... 11100000000000111
10 ... 1110000000000000111
-
Table[FromDigits@ If[n < 4, ConstantArray[1, 2 n - 1], Join[#, ConstantArray[0, 2 n - 7], #]] &@ ConstantArray[1, 3], {n, 14}] (* or *)
Rest@ CoefficientList[Series[-x (10 x - 1) (10 x + 1) (100 x^2 + 10 x + 1)/((x - 1) (100 x - 1)), {x, 0, 14}], x] (* Michael De Vlieger, Nov 25 2016 *)
-
Vec(-x*(10*x-1)*(10*x+1)*(100*x^2+10*x+1)/((x-1)*(100*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013
A135577
Numbers that have only the digit "1" as first, central and final digit. For numbers with 5 or more digits the rest of digits are "0".
Original entry on oeis.org
1, 111, 10101, 1001001, 100010001, 10000100001, 1000001000001, 100000010000001, 10000000100000001, 1000000001000000001, 100000000010000000001, 10000000000100000000001, 1000000000001000000000001, 100000000000010000000000001, 10000000000000100000000000001
Offset: 1
----------------------------
n ............ a(n)
----------------------------
1 ............. 1
2 ............ 111
3 ........... 10101
4 .......... 1001001
5 ......... 100010001
6 ........ 10000100001
7 ....... 1000001000001
8 ...... 100000010000001
9 ..... 10000000100000001
10 ... 1000000001000000001
-
Join[{1}, LinearRecurrence[{111, -1110, 1000}, {111, 10101, 1001001}, 25]] (* G. C. Greubel, Oct 19 2016 *)
Join[{1},Table[FromDigits[Join[{1},PadRight[{},n,0],{1},PadRight[{},n,0],{1}]],{n,0,10}]] (* Harvey P. Dale, Aug 15 2022 *)
-
Vec(-x*(2000*x^3-1110*x^2+1)/((x-1)*(10*x-1)*(100*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013
A138721
Concatenation of n digits 1, n digits 0 and n digits 1.
Original entry on oeis.org
101, 110011, 111000111, 111100001111, 111110000011111, 111111000000111111, 111111100000001111111, 111111110000000011111111, 111111111000000000111111111, 111111111100000000001111111111, 111111111110000000000011111111111, 111111111111000000000000111111111111
Offset: 1
From _Omar E. Pol_, Nov 12 2008: (Start)
n Successive digits of a(n)
1 ( 1 0 1 )
2 ( 1 1 0 0 1 1 )
3 ( 1 1 1 0 0 0 1 1 1 )
4 ( 1 1 1 1 0 0 0 0 1 1 1 1 )
5 ( 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 )
(End)
-
a:= n-> parse(cat(1$n,0$n,1$n)):
seq(a(n), n=1..14); # Alois P. Heinz, Mar 03 2022
-
Table[(100^n + 1)*(10^n - 1)/9, {n, 15}] (* Paolo Xausa, Aug 02 2024 *)
-
Vec(x*(101000*x^2-2200*x+101)/((x-1)*(10*x-1)*(100*x-1)*(1000*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013
A138145
Palindromes formed from the reflected decimal expansion of the concatenation of 1, 1, 1 and infinite 0's.
Original entry on oeis.org
1, 11, 111, 1111, 11111, 111111, 1110111, 11100111, 111000111, 1110000111, 11100000111, 111000000111, 1110000000111, 11100000000111, 111000000000111, 1110000000000111, 11100000000000111, 111000000000000111
Offset: 1
n .... a(n)
1 .... 1
2 .... 11
3 .... 111
4 .... 1111
5 .... 11111
6 .... 111111
7 .... 1110111
8 .... 11100111
9 .... 111000111
10 ... 1110000111
11 ... 11100000111
12 ... 111000000111
13 ... 1110000000111
-
Table[If[n < 7, (10^n - 1)/9, 111 + 111*10^(n-3)], {n, 25}] (* or *)
LinearRecurrence[{11, -10}, {1, 11, 111, 1111, 11111, 111111, 1110111}, 25] (* Paolo Xausa, Aug 08 2024 *)
-
Vec(-x*(10*x^2-1)*(100*x^4+10*x^2+1)/((x-1)*(10*x-1)) + O(x^100)) \\ Colin Barker, Sep 15 2013
A138144
Palindromes formed from the reflected decimal expansion of the concatenation of 1, 1 and infinite 0's.
Original entry on oeis.org
1, 11, 111, 1111, 11011, 110011, 1100011, 11000011, 110000011, 1100000011, 11000000011, 110000000011, 1100000000011, 11000000000011, 110000000000011, 1100000000000011, 11000000000000011, 110000000000000011
Offset: 1
n .... a(n)
1 .... 1
2 .... 11
3 .... 111
4 .... 1111
5 .... 11011
6 .... 110011
7 .... 1100011
8 .... 11000011
9 .... 110000011
10 ... 1100000011
-
LinearRecurrence[{11,-10},{1,11,111,1111,11011},20] (* Harvey P. Dale, Aug 21 2016 *)
-
Vec(-x*(10*x^2-1)*(10*x^2+1)/((x-1)*(10*x-1)) + O(x^100)) \\ Colin Barker, Sep 15 2013
A138826
Concatenation of 2n-1 digits 1, n digits 0 and 2n-1 digits 1.
Original entry on oeis.org
101, 11100111, 1111100011111, 111111100001111111, 11111111100000111111111, 1111111111100000011111111111, 111111111111100000001111111111111, 11111111111111100000000111111111111111
Offset: 1
n ........... a(n)
1 ........... 101
2 ......... 11100111
3 ....... 1111100011111
4 ..... 111111100001111111
5 ... 11111111100000111111111
-
Table[(1000^n + 10)*(100^n - 10)/900, {n, 10}] (* Paolo Xausa, Aug 08 2024 *)
-
Vec(x*(1100000000*x^3-2000000*x^2+888910*x+101)/((x-1)*(100*x-1)*(1000*x-1)*(100000*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013
A138147
Concatenation of n digits 1 and n digits 0.
Original entry on oeis.org
10, 1100, 111000, 11110000, 1111100000, 111111000000, 11111110000000, 1111111100000000, 111111111000000000, 11111111110000000000, 1111111111100000000000, 111111111111000000000000, 11111111111110000000000000, 1111111111111100000000000000, 111111111111111000000000000000
Offset: 1
n ... A020522(n) ..... a(n)
1 ....... 2 ........... 10
2 ...... 12 .......... 1100
3 ...... 56 ......... 111000
4 ..... 240 ........ 11110000
5 ..... 992 ....... 1111100000
6 .... 4032 ...... 111111000000
7 ... 16256 ..... 11111110000000
- J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 136, Ex. 4.2.2. - N. J. A. Sloane, Jul 27 2012
-
[(10^(2*n) - 10^n)/9: n in [1..30]]; // Vincenzo Librandi, Apr 26 2011
-
Table[FromDigits[Join[PadRight[{},n,1],PadRight[{},n,0]]],{n,15}] (* Harvey P. Dale, Nov 20 2011 *)
-
Vec(10*x/((10*x-1)*(100*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013
A147759
Palindromes formed from the reflected decimal expansion of the infinite concatenation of 1's and 0's.
Original entry on oeis.org
1, 11, 101, 1001, 10101, 101101, 1010101, 10100101, 101010101, 1010110101, 10101010101, 101010010101, 1010101010101, 10101011010101, 101010101010101, 1010101001010101, 10101010101010101, 101010101101010101
Offset: 1
n .... Successive digits of a(n)
1 ............. ( 1 )
2 ............ ( 1 1 )
3 ........... ( 1 0 1 )
4 .......... ( 1 0 0 1 )
5 ......... ( 1 0 1 0 1 )
6 ........ ( 1 0 1 1 0 1 )
7 ....... ( 1 0 1 0 1 0 1 )
8 ...... ( 1 0 1 0 0 1 0 1 )
9 ..... ( 1 0 1 0 1 0 1 0 1 )
10 ... ( 1 0 1 0 1 1 0 1 0 1 )
-
I:=[1,11,101,1001]; [n le 4 select I[n] else 11*Self(n-1)-20*Self(n-2)+110*Self(n-3)-100*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 05 2015
-
CoefficientList[Series[x/((1 - x) (1 - 10 x) (1 + 10 x^2)),{x, 0, 20}], x] (* Vincenzo Librandi, Dec 05 2015 *)
LinearRecurrence[{11,-20,110,-100},{1,11,101,1001},30] (* Harvey P. Dale, Apr 10 2022 *)
-
Vec(x/((1-x)*(1-10*x)*(1+10*x^2)) + O(x^30)) \\ Michel Marcus, Dec 05 2015
A147539
Numbers whose binary representation is the concatenation of n 1's, 2n-1 digits 0 and n 1's.
Original entry on oeis.org
5, 99, 1799, 30735, 507935, 8257599, 133169279, 2139095295, 34292630015, 549218943999, 8791798056959, 140703128621055, 2251524935786495, 36026597995724799, 576443160117411839, 9223231299366486015
Offset: 1
-
List([1..20], n-> 2^(4*n-1) -2^(3*n-1) +2^n -1); # G. C. Greubel, Jan 12 2020
-
[2^n-1+2^(4*n-1)-2^(3*n-1) : n in [1..20]]; // Wesley Ivan Hurt, Jan 11 2017
-
A147539:=n->2^n-1+2^(4*n-1)-2^(3*n-1): seq(A147539(n), n=1..30); # Wesley Ivan Hurt, Jan 11 2017
-
Table[FromDigits[Join[Table[1, {n}], Table[0, {2n - 1}], Table[1, {n}]], 2], {n, 1, 20}] (* Stefan Steinerberger, Nov 11 2008 *)
LinearRecurrence[{27,-202,432,-256},{5,99,1799,30735},20] (* Harvey P. Dale, Aug 28 2017 *)
-
vector(20, n, 2^(4*n-1) -2^(3*n-1) +2^n -1) \\ G. C. Greubel, Jan 12 2020
-
[2^(4*n-1) -2^(3*n-1) +2^n -1 for n in (1..20)] # G. C. Greubel, Jan 12 2020
A147757
Palindromes formed from the reflected decimal expansion of the concatenation of 1, 0 and infinite digits 1.
Original entry on oeis.org
1, 11, 101, 1001, 10101, 101101, 1011101, 10111101, 101111101, 1011111101, 10111111101, 101111111101, 1011111111101, 10111111111101, 101111111111101, 1011111111111101, 10111111111111101, 101111111111111101
Offset: 1
n .... Successive digits of a(n)
1 ............. ( 1 )
2 ............ ( 1 1 )
3 ........... ( 1 0 1 )
4 .......... ( 1 0 0 1 )
5 ......... ( 1 0 1 0 1 )
6 ........ ( 1 0 1 1 0 1 )
7 ....... ( 1 0 1 1 1 0 1 )
8 ...... ( 1 0 1 1 1 1 0 1 )
9 ..... ( 1 0 1 1 1 1 1 0 1 )
10 ... ( 1 0 1 1 1 1 1 1 0 1 )
-
f[n_] := Block[{w = {1, 0}}, Which[n == 1, w = {1}, n == 2, w = {1, 1}, n == 3, AppendTo[w, 1], n >= 4, w = Join[w, Table[1, {n - 4}], Reverse@ w]]; FromDigits@ w]; Array[f, 19] (* Michael De Vlieger, Dec 05 2015 *)
LinearRecurrence[{11,-10},{1,11,101,1001,10101},20] (* Harvey P. Dale, Aug 02 2017 *)
-
Vec( x+11*x^2+101*x^3 -91*x^4*(-11+10*x) / ( (10*x-1)*(x-1) ) + O(x^30)) \\ Michel Marcus, Dec 05 2015
Showing 1-10 of 15 results.
Comments