A138152 Triangular sequence: a(n, m) = a(n - 1, m) + 10 and a(n,m) + 2*ceiling(log(1+k)), k <= n.
3, 7, 11, 13, 17, 19, 23, 29, 31, 31, 37, 41, 41, 43, 47, 53, 59, 61, 61, 67, 71, 71, 73, 79, 83, 83, 89, 97, 101, 103, 101, 103, 107, 109, 113, 113, 127, 131, 131, 137, 139, 149, 151, 151, 157, 163, 163, 167, 173, 173, 179, 181, 181, 191, 193, 197, 199
Offset: 1
Examples
Rows begin 3, 7; 11, 13, 17, 19; 23, 29, 31; 31, 37, 41; 41, 43, 47; 53, 59, 61; 61, 67, 71; 71, 73, 79, 83; 83, 89; 97, 101, 103; 101, 103, 107, 109, 113; 113; 127, 131; 131, 137, 139; 149, 151; 151, 157, 163; 163, 167, 173; 173, 179, 181; 181; 191, 193, 197, 199;
Programs
-
Mathematica
a[0, 0] = 0; a[0, 1] = 1; a[0, 2] = 3; a[0, 3] = 7; a[0, 4] = 9; a[n_, m_] := a[n, m] = a[n - 1, m] + 10; a0 = Table[Union[Flatten[Table[If[PrimeQ[a[n, m]] && PrimeQ[a[n, m] + 2*k], {a[n, m], a[n, m] + 2*k}, {}], {m, 0, 4}, {k, 0, Ceiling[Log[1 +n]]}]]], {n, 0, 20}]; Flatten[a0]
Formula
a(0, m) = {0,1,3,7,9};
a(n, m) = a(n-1, m) + 10;
a(n, m) = If( prime,{a(n,m),a(n,m)+2*ceiling(log(1+k)),k <= n).
Comments