cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138155 Triangle read by rows: T(n,k) is the number of Dyck paths with nondecreasing peaks having semilength n and with height of last peak equal to k (1 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 7, 8, 4, 1, 1, 12, 19, 13, 5, 1, 1, 20, 42, 37, 19, 6, 1, 1, 33, 89, 97, 62, 26, 7, 1, 1, 54, 183, 240, 184, 95, 34, 8, 1, 1, 88, 368, 570, 511, 312, 137, 43, 9, 1, 1, 143, 728, 1312, 1351, 951, 491, 189, 53, 10, 1
Offset: 1

Views

Author

Emeric Deutsch, Mar 04 2008

Keywords

Comments

Row sums yield A048285.
T(n,2) = A000071(n+1) (Fibonacci numbers - 1).
T(n,3) = A095681(n-3).

Examples

			T(2,1)=1 because we have /\/\.
T(5,4)=4 because we have UDUUUUDDDD, UUDUUUDDDD, UUUDUUDDDD and UUUUDUDDDD, where U=(1,1) and D=(1,-1).
Triangle T(n,k) begins:
1;
1,  1;
1,  2,   1;
1,  4,   3,   1;
1,  7,   8,   4,   1;
1, 12,  19,  13,   5,  1;
1, 20,  42,  37,  19,  6,  1;
1, 33,  89,  97,  62, 26,  7, 1;
1, 54, 183, 240, 184, 95, 34, 8, 1;
		

Crossrefs

Programs

  • Maple
    g:=sum((-1)^n*t*z^(2*n+1)*(1-z)/(product((1-z)*(1-t*z^i)-z,i=1..n+1)), n=0.. 30): gser:=simplify(series(g,z=0,15)): for n to 11 do P[n]:=sort(coeff(gser, z,n)) end do: for n to 11 do seq(coeff(P[n],t,j),j=1..n) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(x, y, k, t) option remember; `if`(x=0, z^k,
          `if`(t and yx, 0, b(x-1, y+1, k, true)))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=1..n))(b(2*n, 0$2, true)):
    seq(T(n), n=1..12);  # Alois P. Heinz, Apr 02 2017
  • Mathematica
    b[x_, y_, k_, t_] := b[x, y, k, t] = If[x==0, z^k, If[t && y x, 0, b[x-1, y+1, k, True]]];
    T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 1, n}]][b[2*n, 0, 0, True]];
    Array[T, 12] // Flatten (* Jean-François Alcover, Jun 19 2018, from Alois P. Heinz's 2nd Maple program *)

Formula

G.f.: Sum_{n >= 0} {(-1)^n tz^{2n+1}(1-z)}/ {Product_{i=1...n+1}((1-z)(1-tz^i)-z)}.
Conjectural g.f.: Sum_{n>=1} (t*x*(1 - x))^n/( Product_{i=2..n+1} (1 - 2*x + x^i) ) = t*x + (t + t^2)*x^2 + (t + 2*t^2 + t^3)*x^3 + ... (checked up to x^12). - Peter Bala, Mar 31 2017