A138160 A triangular sequence of coefficients of the expansion of a Green's function for the radial Morse potential with x being the kinetic energy and t being the radius: Hamiltonian; H=K+V=x+Exp[-2*t]-2*Exp[t];G*Exp[t*x)=Exp[x*t]/(t-H); p(t,x)=Exp[t*x]/(t-x-Exp[-2*t] + 2*Exp[-t]).
1, -1, 1, -1, 4, -4, 3, -2, 1, -24, 36, -27, 13, -6, 3, -1, 182, -354, 330, -198, 85, -28, 10, -4, 1, -1730, 4090, -4480, 3120, -1595, 631, -195, 50, -15, 5, -1, 19802, -55270, 70430, -55730, 31630, -14018, 5101, -1536, 375, -80, 21, -6, 1, -264334, 850990, -1246504, 1121960, -711480, 345268, -135639, 44997, -12922, 3171, -644, 119, -28, 7, -1
Offset: 1
Examples
Triangle begins: {1}, {-1, 1, -1}, {4, -4, 3, -2, 1}, {-24, 36, -27, 13, -6, 3, -1}, {182, -354, 330, -198, 85, -28, 10, -4, 1}, {-1730, 4090, -4480, 3120, -1595, 631, -195, 50, -15, 5, -1}, {19802, -55270, 70430, -55730, 31630, -14018, 5101, -1536, 375, -80, 21, -6, 1}, {-264334, 850990, -1246504, 1121960, -711480, 345268, -135639, 44997, -12922, 3171, -644, 119, -28, 7, -1}, ...
References
- A. Messiah, Quantum mechanics, vol. 2, page 712, 795-800, North Holland, 1969.
Programs
-
Mathematica
p[t_, x_] = FullSimplify[Exp[t*x]/(t - x - Exp[ -2*t] + 2*Exp[ -t])] g = Table[ FullSimplify[ExpandAll[n!*(1 - x)^(n + 1)*SeriesCoefficient[ Series[p[t, x], {t, 0, 30}], n]]], {n, 0, 10}]; a = Table[CoefficientList[FullSimplify[ExpandAll[n!*(1 - x)^(n + 1)*SeriesCoefficient[Series[p[t, x], {t, 0, 30}], n]]], x], {n, 0, 10}]; Flatten[a]
Formula
p(t,x)=Exp[t*x]/(t - x - Exp[ -2*t] + 2*Exp[ -t])=sum(P(x,n)*t^n/n!,m{n,0,Infinity}); out_n,m=Coefficients(n!*(1-x)^(n+1)*P(x,n)).
Comments