A138164 Row sums of Riordan array (c(-x^2),xc(-x^2)^2)^(-1) where c(x) is the g.f. of A000108.
1, 1, 2, 4, 9, 20, 47, 109, 262, 622, 1516, 3653, 8988, 21883, 54213, 133004, 331233, 817432, 2044151, 5068346, 12716872, 31651555, 79636493, 198843284, 501466519, 1255489165, 3172569392, 7961388439, 20152910577, 50674576772
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..2000
- J.-L. Baril, R. Genestier, A. Giorgetti, and A. Petrossian, Rooted planar maps modulo some patternss, Preprint 2016.
Programs
-
Maple
vx := 2/sqrt(3)*sin(arcsin(x*3*sqrt(3)/2)/3) ; A138164 := proc(n) 1/(1-vx-vx^2) ; coeftayl(%,x=0,n) ; subs(4^(1/2)=2,%) ; end proc: # R. J. Mathar, Jul 28 2016
-
Mathematica
CoefficientList[Series[1/(1/3 - 2*Sin[1/3*ArcSin[3*Sqrt[3]*x/2]]/Sqrt[3] + 2*Cos[2/3*ArcSin[3*Sqrt[3]*x/2]]/3), {x, 0, 30}], x] (* Vaclav Kotesovec, Nov 15 2021 *)
-
PARI
my(x='x+O('x^66)); v=serreverse(x*(1-x^2)); Vec(1/(1-v-v^2)) \\ Joerg Arndt, Feb 24 2015
Formula
G.f.: 1/(1-v-v^2) where v=(2/sqrt(3))*sin(arcsin(x*3*sqrt(3)/2)/3) is the series reversion of x(1-x^2). [Corrected by Paul D. Hanna, Feb 24 2015]
From Gary W. Adamson, Jul 07 2011: (Start)
Let M = the production matrix:
1, 1, 0, 0, 0, 0, 0, 0, ...
1, 0, 1, 0, 0, 0, 0, 0, ...
1, 1, 0, 1, 0, 0, 0, 0, ...
1, 0, 1, 0, 1, 0, 0, 0, ...
1, 1, 0, 1, 0, 1, 0, 0, ...
1, 0, 1, 0, 1, 0, 1, 0, ...
1, 1, 0, 1, 0, 1, 0, 1, ...
...
a(n) = top left term of M^n. a(n+1) = sum of top row terms of M^n. Example: top row of M^3 = (4, 3, 1, 1), where a(3) = 4 and a(4) = 9 = (4 + 3 + 1 + 1). (End)
v(x) = Sum_{n>=1} A001764(n-1)*x^(2*n-1). - Paul D. Hanna, Feb 24 2015
Conjecture: -8*n*(n-1)*a(n) + 12*(n+3)*(n-1)*a(n-1) + 2*(89*n^2-512*n+651)*a(n-2) + 3*(-127*n^2+715*n-966)*a(n-3) + 3*(-247*n^2+2431*n-5698)*a(n-4) + 9*(75*n-341)*(3*n-16)*a(n-5) - 72*(3*n-14)*(3*n-16)*a(n-6) = 0. - R. J. Mathar, Feb 24 2015
From Vaclav Kotesovec, Nov 15 2021: (Start)
Recurrence (of order 4): 4*(n-1)*n*(11*n^2 - 50*n + 48)*a(n) = 12*(n-1)*(11*n^3 - 50*n^2 + 66*n - 40)*a(n-1) + (253*n^4 - 2294*n^3 + 6379*n^2 - 5898*n + 720)*a(n-2) - 3*(297*n^4 - 2538*n^3 + 7347*n^2 - 7946*n + 2000)*a(n-3) + 3*(3*n - 10)*(3*n - 8)*(11*n^2 - 28*n + 9)*a(n-4).
a(n) ~ (45*(1 - (-1)^n) + 26*sqrt(3)*(1 + (-1)^n)) * 3^(3*n/2) / (sqrt(Pi) * n^(3/2) * 2^(n + 1/2)). (End)
Comments