cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A157527 Primes using only the composite digits (4, 6, 8, 9) and all of them.

Original entry on oeis.org

46489, 46889, 48649, 48869, 64489, 64849, 68449, 68489, 84649, 84869, 88469, 444869, 448969, 449689, 468499, 468869, 468889, 468899, 469849, 486449, 486869, 486949, 488689, 489689, 489869, 496849, 496889, 498469, 498689, 644489, 644869
Offset: 1

Views

Author

Lekraj Beedassy, Mar 02 2009, Mar 03 2009

Keywords

Comments

Subsequence of A051416.
There are no 4-digit terms so each term must have at least one repeating digit. - Harvey P. Dale, Oct 05 2023

Crossrefs

Programs

  • Maple
    a := proc (n) if convert(convert(ithprime(n), base, 10), set) = {4, 6, 8, 9} then ithprime(n) else end if end proc: seq(a(n), n = 1 .. 53000); # Emeric Deutsch, Mar 03 2009
    isA157527 := proc(n) local dgs ; if not isprime(n) then false; else dgs := convert(convert(n,base,10),set) ; if dgs intersect {4,6,8,9} <> {4,6,8,9} then false; elif dgs intersect {0,1,2,3,5,7} <> {} then false; else true; fi; fi; end: for n from 1 to 100000 do p := ithprime(n) ; if isA157527(p) then printf("%d,",p) ; fi; od: # R. J. Mathar, Mar 03 2009
  • Mathematica
    With[{c={4,6,8,9}},Select[Flatten[Table[10 FromDigits/@Tuples[c,n]+9,{n,5}]],PrimeQ[#] && Intersection[c,IntegerDigits[#]]==c&]] (* Harvey P. Dale, Oct 05 2023 *)

Extensions

Corrected and extended by numerous correspondents, Mar 04 2009
Showing 1-1 of 1 results.