A157527 Primes using only the composite digits (4, 6, 8, 9) and all of them.
46489, 46889, 48649, 48869, 64489, 64849, 68449, 68489, 84649, 84869, 88469, 444869, 448969, 449689, 468499, 468869, 468889, 468899, 469849, 486449, 486869, 486949, 488689, 489689, 489869, 496849, 496889, 498469, 498689, 644489, 644869
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a := proc (n) if convert(convert(ithprime(n), base, 10), set) = {4, 6, 8, 9} then ithprime(n) else end if end proc: seq(a(n), n = 1 .. 53000); # Emeric Deutsch, Mar 03 2009 isA157527 := proc(n) local dgs ; if not isprime(n) then false; else dgs := convert(convert(n,base,10),set) ; if dgs intersect {4,6,8,9} <> {4,6,8,9} then false; elif dgs intersect {0,1,2,3,5,7} <> {} then false; else true; fi; fi; end: for n from 1 to 100000 do p := ithprime(n) ; if isA157527(p) then printf("%d,",p) ; fi; od: # R. J. Mathar, Mar 03 2009
-
Mathematica
With[{c={4,6,8,9}},Select[Flatten[Table[10 FromDigits/@Tuples[c,n]+9,{n,5}]],PrimeQ[#] && Intersection[c,IntegerDigits[#]]==c&]] (* Harvey P. Dale, Oct 05 2023 *)
Extensions
Corrected and extended by numerous correspondents, Mar 04 2009
Comments