A138191 Denominator of (n-1)*n*(n+1)/12.
1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1
Offset: 1
Examples
0, 1/2, 2, 5, 10, 35/2, 28, 42, 60, 165/2, 110, 143, 182, ...
Links
- Eric Weisstein's World of Mathematics, Kirchhoff Index.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,1).
Programs
-
Mathematica
Table[(n^3-n)/12,{n,120}]//Denominator (* or *) PadRight[{},120,{1,2,1,1}] (* Harvey P. Dale, Apr 15 2019 *)
-
Python
def A138191(n): return (1,1,2,1)[n&3] # Chai Wah Wu, Apr 25 2024
Formula
From R. J. Mathar, Mar 07 2008: (Start)
a(n) = 1 + (A000292(n-1) mod 2) = a(n-4).
O.g.f.: -1-5/(4(x-1))+1/(4(x+1))-1/(2(x^2+1)). (End)
From Amiram Eldar, Jan 01 2023: (Start)
Multiplicative with a(p^e) = 2 if p = 2 and e = 1, and 1 otherwise.
Dirichlet g.f.: zeta(s)*(1+1/2^s-1/4^s).
Sum_{k=1..n} a(k) ~ (5/4)*n. (End)
Comments