cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138196 Number of different ways n! can be represented as the difference of two squares; also, for n >= 4, half the number of positive integer divisors of n!/4.

Original entry on oeis.org

1, 0, 0, 2, 4, 9, 18, 36, 60, 105, 210, 324, 648, 1080, 1680, 2352, 4704, 6480, 12960, 18360, 27200, 43200, 86400, 110880, 155232, 243936, 310464, 423360, 846720, 1080000, 2160000, 2592000, 3686400, 5713920, 7713792, 9237888, 18475776
Offset: 1

Views

Author

John T. Robinson (jrobinson(AT)acm.org), May 04 2008

Keywords

Comments

For maximal value x such that x^2 - y^2 = n! see A139151, for maximal value y such that x^2 - y^2 = n! see A181892. - Artur Jasinski, Mar 31 2012

Examples

			a(5)=4 since 5! = 120 = 31^2 - 29^2 = 17^2 - 13^2 = 13^2 - 7^2 = 11^2 - 1^2.
		

Crossrefs

Programs

  • Maple
    A138196 := proc(n)
            if n <= 3 then
                    op(n,[1,0,0]) ;
            else
                    numtheory[tau](n!/4)/2 ;
            end if;
    end proc: # R. J. Mathar, Apr 03 2012
  • Mathematica
    (* for n>=4 *) cc = {}; Do[w = n!/4; kk = Floor[(DivisorSigma[0, w] + 1)/2]; AppendTo[cc, kk], {n, 4, 54}]; cc (* Artur Jasinski, Mar 31 2012 *)
  • PARI
    a(n) = if (n<4, (n==1), numdiv(n!/4)/2); \\ Michel Marcus, Jun 22 2019

Formula

For n >= 4, if p_i is the i-th prime, with p_k the largest prime not exceeding n and n!/4 = (p_1^e_1)*(p_2^e_2)* ... *(p_k^e_k), then a(n) = (1/2)*(e_1+1)*(e_2_+1)* ... *(e_k+1).