A138212 G.f.: A(x) = 1 + x*(1 + x*(1 + x*(...(1 + x*(...)^(2n))...)^6)^4)^2.
1, 1, 2, 9, 68, 732, 10250, 176654, 3613044, 85476720, 2295275372, 68949496421, 2290588299708, 83374406924240, 3299390271801838, 141034101443780374, 6475752407825487220, 317866884692663325892, 16609896989101220207880
Offset: 0
Keywords
Examples
G.f.: A(x)=1+x*B(x)^2, B(x)=1+x*C(x)^4, C(x)=1+x*D(x)^6, D(x)=1+x*E(x)^8, ... where A(x),B(x),C(x),... are the g.f. of the sequences given below. A=[1,1,2,9,68,732,10250,176654,3613044,85476720,...]; B=[1,1,4,30,328,4677,81888,1696086,40520620,1096342026,...]; C=[1,1,6,63,908,16311,347466,8519957,235763712,7259384208,...]; D=[1,1,8,108,1936,42110,1062416,30283824,958845640,...]; E=[1,1,10,165,3540,90550,2646522,86251140,3086189660,...]; F=[1,1,12,234,5848,172107,5725392,210342902,8410505748,...]; ...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..340
Programs
-
PARI
{a(n)=local(A=1+x+x*O(x^n)); for(j=0, n-1, A=1+x*A^(2*(n-j))); polcoeff(A, n)}