A138239 Triangle read by rows: T(n,k) = A000040(k) if A002445(n) mod A000040(k) = 0, otherwise 1.
1, 2, 3, 2, 3, 5, 2, 3, 1, 7, 2, 3, 5, 1, 1, 2, 3, 1, 1, 11, 1, 2, 3, 5, 7, 1, 13, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 17, 1, 1, 2, 3, 1, 7, 1, 1, 1, 19, 1, 1, 2, 3, 5, 1, 11, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 23, 1, 1, 1, 2, 3, 5, 7, 1, 13, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0
Examples
First few rows of the triangle and row products are: 1 = 1 2*3 = 6 2*3*5 = 30 2*3*1*7 = 42 2*3*5*1*1 = 30 2*3*1*1*11*1 = 66 2*3*5*7*1*13*1 = 2730
Links
- Michel Marcus, Rows n=0..100 of triangle, flattened
Programs
-
Maple
T:= (n, k)-> (p-> `if`(irem(denom(bernoulli(2*n)), p)=0, p, 1))(ithprime(k)): seq(seq(T(n, k), k=1..n+1), n=0..20); # Alois P. Heinz, Aug 27 2017
-
Mathematica
t[n_, k_] := If[Mod[Denominator[BernoulliB[2n]], (p = Prime[k])] == 0, p, 1]; Flatten[Table[t[n, k], {n, 0, 13}, {k, 1, n+1}]][[1 ;; 102]] (* Jean-François Alcover, Jun 16 2011 *)
-
PARI
tabl(nn) = {for (n=0, nn, dbn = denominator(bernfrac(2*n)); for (k=1, n+1, if (! (dbn % prime(k)), w = prime(k), w = 1); print1(w, ", "); ); print; ); } \\ Michel Marcus, Aug 27 2017
Extensions
Definition edited by N. J. A. Sloane, Mar 18 2010
Offset corrected by Alois P. Heinz, Aug 27 2017
Comments