A138243 Triangle read by rows: Row products give A027642.
1, 2, 1, 2, 3, 1, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 7, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0
Examples
Row products of the first few rows are: 1 = 1 2*1 = 2 2*3*1 = 6 1*1*1*1 = 1 2*3*5*1*1 = 30 1*1*1*1*1*1 = 1 2*3*1*7*1*1*1 = 42 1*1*1*1*1*1*1*1 = 1 2*3*5*1*1*1*1*1*1 = 30
Links
- Michel Marcus, Rows n=0..100 of triangle, flattened
Programs
-
Maple
T:= (n, k)-> (p-> `if`(irem(denom(bernoulli(n)), p)=0, p, 1))(ithprime(k)): seq(seq(T(n, k), k=1..n+1), n=0..20); # Alois P. Heinz, Aug 27 2017
-
Mathematica
Table[With[{p = Prime@ k}, p Boole[Divisible[Denominator@ BernoulliB[n - 1], p]]] /. 0 -> 1, {n, 14}, {k, n}] // Flatten (* Michael De Vlieger, Aug 27 2017 *)
-
PARI
tabl(nn) = {for (n=0, nn, dbn = denominator(bernfrac(n)); for (k=1, n+1, if (! (dbn % prime(k)), w = prime(k), w = 1); print1(w, ", "); ); print; ); } \\ Michel Marcus, Aug 27 2017
Extensions
Offset corrected by Alois P. Heinz, Aug 27 2017
Comments