cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138243 Triangle read by rows: Row products give A027642.

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 7, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Mats Granvik, Mar 08 2008

Keywords

Comments

Except for the first column, the n-th prime number appears in every A006093(n)-th row, beginning at the A000040(n)-th row, in the n-th column.

Examples

			Row products of the first few rows are:
1 = 1
2*1 = 2
2*3*1 = 6
1*1*1*1 = 1
2*3*5*1*1 = 30
1*1*1*1*1*1 = 1
2*3*1*7*1*1*1 = 42
1*1*1*1*1*1*1*1 = 1
2*3*5*1*1*1*1*1*1 = 30
		

Crossrefs

Programs

  • Maple
    T:= (n, k)-> (p-> `if`(irem(denom(bernoulli(n)), p)=0, p, 1))(ithprime(k)):
    seq(seq(T(n, k), k=1..n+1), n=0..20);  # Alois P. Heinz, Aug 27 2017
  • Mathematica
    Table[With[{p = Prime@ k}, p Boole[Divisible[Denominator@ BernoulliB[n - 1], p]]] /. 0 -> 1, {n, 14}, {k, n}] // Flatten (* Michael De Vlieger, Aug 27 2017 *)
  • PARI
    tabl(nn) = {for (n=0, nn, dbn = denominator(bernfrac(n)); for (k=1, n+1, if (! (dbn % prime(k)), w = prime(k), w = 1); print1(w, ", "); ); print; ); } \\ Michel Marcus, Aug 27 2017

Formula

T(n,k) = A000040(k) if A027642(n) mod A000040(k) = 0, 1 otherwise.

Extensions

Offset corrected by Alois P. Heinz, Aug 27 2017