cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A351969 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} binomial(n-1,4*k) * a(k) * a(n-4*k-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 7, 22, 57, 128, 389, 1904, 9329, 38040, 132147, 542648, 3283633, 20997824, 114657097, 536178880, 2784500161, 19876061313, 153326461333, 1034551840125, 6051063487505, 38079448058864, 312420426286609, 2785055245002944, 22141255546319849
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 26 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, 4 k] a[k] a[n - 4 k - 1], {k, 0, Floor[(n - 1)/4]}]; Table[a[n], {n, 0, 28}]

Formula

E.g.f.: exp( Sum_{n>=0} a(n) * x^(4*n+1) / (4*n+1)! ).

A351968 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/3)} binomial(n-1,3*k) * a(k) * a(n-3*k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 16, 37, 114, 478, 1907, 6777, 28414, 148580, 758930, 3580294, 18982050, 117888762, 720679726, 4193516446, 26798335830, 191775198574, 1353198262531, 9303932353127, 69303156652024, 559295471922890, 4454686099742810, 35198016469190740
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 26 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, 3 k] a[k] a[n - 3 k - 1], {k, 0, Floor[(n - 1)/3]}]; Table[a[n], {n, 0, 27}]

Formula

E.g.f.: exp( Sum_{n>=0} a(n) * x^(3*n+1) / (3*n+1)! ).

A352435 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n,2*k+1) * a(k) * a(n-2*k-1).

Original entry on oeis.org

1, 1, 2, 7, 32, 182, 1244, 9919, 90384, 926552, 10553728, 132231446, 1807390960, 26762801828, 426771821000, 7291604699407, 132885997278944, 2573145015936096, 52756125043795232, 1141727892772848248, 26009303834699461248, 622134297287753003008, 15589886235793001142016
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, 2 k + 1] a[k] a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 22}]

Formula

E.g.f.: 1 / (1 - Sum_{n>=0} a(n) * x^(2*n+1) / (2*n+1)!).

A138315 E.g.f. satisfies: A(x) = exp( Sum_{n>=0} a(n)*x^(2n+1)/(2n+1) ).

Original entry on oeis.org

1, 1, 1, 3, 9, 45, 225, 3015, 22545, 473625, 4637025, 191508075, 2288273625, 123786785925, 1735168572225, 276775700288175, 4433024011291425, 510439906229029425, 9196849128341801025, 3123191121957643317075
Offset: 0

Views

Author

Paul D. Hanna, Mar 13 2008

Keywords

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + 3*x^3/3! + 9*x^4/4! + 45*x^5/5! + 225*x^6/6! +...
Log(A(x)) = x + x^3/3 + x^5/5 + 3*x^7/7 + 9*x^9/9 + 45*x^11/11 + 225*x^13/13 +...
		

Crossrefs

Cf. A138314.

Programs

  • PARI
    {a(n)=local(A=if(n==0,x,sum(k=0,n\2,a(k)*x^(2*k+1)/(2*k+1)))); n!*polcoeff(exp(A+x*O(x^n)),n)}

A351941 a(0) = 1; a(n) = -Sum_{k=0..floor((n-1)/2)} binomial(n-1,2*k) * a(k) * a(n-2*k-1).

Original entry on oeis.org

1, -1, 1, 0, -3, 8, -3, -57, 225, -96, -2991, 13873, -255, -313506, 1495089, 1473024, -54621231, 243365688, 705129201, -14109279483, 53228648865, 349791931434, -5000315242479, 13572033641204, 204954070915977, -2294997521498172, 2691551249257017
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 26 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = -Sum[Binomial[n - 1, 2 k] a[k] a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 26}]

Formula

E.g.f.: exp( -Sum_{n>=0} a(n) * x^(2*n+1) / (2*n+1)! ).
Showing 1-5 of 5 results.