A138321 Denominators of the difference between the squarefree totient analogs of the harmonic numbers and the harmonic numbers: F_n - H_n.
1, 2, 3, 12, 15, 5, 210, 840, 2520, 2520, 27720, 27720, 360360, 360360, 180180, 720720, 3063060, 340340, 58198140, 29099070, 58198140, 58198140, 1338557220, 2677114440, 13385572200, 13385572200, 40156716600, 40156716600, 1164544781400, 582272390700, 18050444111700, 144403552893600
Offset: 1
Examples
Denominators of F_n - H_n, e.g., -F_1 - H_1 = (1/1 - 1/1), F_2 = ((1/1 - 1/1) + (1/1 - 1/2)), ... F_11 = ((1/1 - 1/1) + (1/1 - 1/2) + (1/2 - 1/3) + (0 - 1/4) + (1/4 - 1/5) + (1/2 - 1/6) + (1/6 - 1/7) + (0 - 1/8) + (0 - 1/9) + (1/4 - 1/10) + (1/10 - 1/11)).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Dick Boland, An Analog of the Harmonic Numbers Over the Squarefree Integers
Programs
-
Mathematica
Table[Denominator[Sum[MoebiusMu[k]^2/EulerPhi[k], {k, 1, n}]-HarmonicNumber[n]], {n, 1, 60}]
-
PARI
for(n=1, 60,print1(denominator(sum(k=1,n, moebius(k)^2/eulerphi(k) ) - sum(j=1, n, 1/j)), ", ")) \\ G. C. Greubel, Sep 14 2018
Formula
a(n) = denominator( (Sum_{k=1..n} mu(k)^2/phi(k)) - H_n) where mu(k) is the Mobius function, phi(k) is Euler's Totient function and H_n is the n-th Harmonic Number.
Extensions
Data replaced by G. C. Greubel, Sep 14 2018
Comments