cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138413 A bisection of A000957.

Original entry on oeis.org

0, 0, 2, 18, 186, 2120, 25724, 325878, 4260282, 57048048, 778483932, 10786724388, 151355847012, 2146336125648, 30711521221376, 442862000693438, 6429286894263738, 93891870710425440, 1378379704593824300, 20330047491994213884, 301111732041234778316, 4476705468260134734384, 66784808491631598524136
Offset: 0

Views

Author

N. J. A. Sloane, May 08 2008

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<3, n*(2-n),
          ((7*n-12)*b(n-1)+(4*n-6)*b(n-2))/(2*n))
        end:
    a:= n-> b(2*n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Apr 26 2023
  • Python
    from itertools import count, islice
    def A138413_gen(): # generator of terms
        yield from (0,0)
        a, c = 0, 1
        for n in count(1,2):
            a = (c:=c*((n<<2)+2)//(n+2))-a>>1
            yield (a:=(c:=c*((n+1<<2)+2)//(n+3))-a>>1)
    A138413_list = list(islice(A138413_gen(),20)) # Chai Wah Wu, Apr 26 2023

Formula

Conjecture: D-finite with recurrence 4*n*(2*n-1)*(7*n-13)*a(n) +(-910*n^3+3489*n^2-4277*n+1680)*a(n-1) +2*(4*n-7)*(7*n-6)*(4*n-5)*a(n-2)=0. Telescoping would provide another recurrence for A000957. - R. J. Mathar, Jun 26 2020