A138483 Expansion of (phi(q)^3 * phi(q^5) - phi(q) * phi(q^5)^3) / 4 in powers of q where phi() is a Ramanujan theta function.
1, 3, 2, 1, 5, 6, 6, 7, 7, 15, 12, 2, 12, 18, 10, 9, 16, 21, 20, 5, 12, 36, 22, 14, 25, 36, 20, 6, 30, 30, 32, 23, 24, 48, 30, 7, 36, 60, 24, 35, 42, 36, 42, 12, 35, 66, 46, 18, 43, 75, 32, 12, 52, 60, 60, 42, 40, 90, 60, 10, 62, 96, 42, 41, 60, 72, 66, 16, 44
Offset: 1
Examples
G.f. = q + 3*q^2 + 2*q^3 + q^4 + 5*q^5 + 6*q^6 + 6*q^7 + 7*q^8 + 7*q^9 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Michael Somos, Introduction to Ramanujan theta functions, 2019.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
Programs
-
Mathematica
a[ n_] := If[ n < 1, 0, DivisorSum[ n, n/# KroneckerSymbol[ 25, #] (-1)^Quotient[# + 2, 5] If[ Mod[#, 4] > 0, 1, 5] &]]; (* Michael Somos, Sep 27 2015 *) a[ n_] := SeriesCoefficient[ q EllipticTheta[3, 0, q] QPochhammer[ -q, q^2] QPochhammer[ -q^5] QPochhammer[ q^10]^2, {q, 0, n}]; (* Michael Somos, Sep 27 2015 *) a[ n_] := SeriesCoefficient[ (EllipticTheta[3, 0, q]^3 EllipticTheta[3, 0, q^5] - EllipticTheta[3, 0, q] EllipticTheta[3, 0, q^5]^3) / 4, {q, 0, n}]; (* Michael Somos, Sep 27 2015 *)
-
PARI
{a(n) = if( n<1, 0, sumdiv(n, d, n/d * kronecker(25, d) * (-1)^((d+2) \ 5) * if(d%4, 1, 5)))};
-
PARI
{a(n) = my(A, p, e, f); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, (2^(e+1) - 5*(-1)^e) / 3, f = kronecker(5, p); (p^(e+1) - f^(e+1)) / (p - f) )))};
-
PARI
{a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^7 * eta(x^10 + A)^5 / (eta(x + A)^3 * eta(x^4 + A)^3 * eta(x^5 + A) * eta(x^20 + A)), n))};
Formula
Expansion of q * phi(q) * chi(q) * f(q^5) * f(-q^10)^2 in powers of q where phi(), chi(), f() are Ramanujan theta functions.
Expansion of eta(q^2)^7 * eta(q^10)^5 / (eta(q)^3 * eta(q^4)^3 * eta(q^5) * eta(q^20)) in powers of q.
Euler transform of period 20 sequence [3, -4, 3, -1, 4, -4, 3, -1, 3, -8, 3, -1, 3, -4, 4, -1, 3, -4, 3, -4, ...].
a(n) is multiplicative with a(2^e) = (2^(e+1) - 5*(-1)^e) / 3 if e>0, a(5^e) = 5^e, a(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1, 4 (mod 5), a(p^e) = (p^(e+1) + (-1)^e) / (p + 1) if p == 2, 3 (mod 5).
G.f. is a period 1 Fourier series which satisfies f(-1 / (20 t)) = 80^(1/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A113185.
G.f.: x * Product_{k>0} (1 - x^(2*k)) * (1 + x^(2*k-1))^3 * (1 - x^(5*k))^3 * (1 + x^(10*k-5))^4 * (1 + x^(10*k))^3.
a(n) = -(-1)^n * A110712(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Pi^2/(5*sqrt(5)) = 0.882764... . - Amiram Eldar, Nov 24 2023
Comments