A138510 Smallest number b such that in base b the prime factors of the n-th semiprime (A001358) have equal lengths.
1, 2, 1, 6, 8, 3, 3, 12, 1, 14, 12, 18, 2, 20, 14, 24, 1, 18, 4, 20, 30, 32, 4, 24, 38, 4, 42, 5, 44, 30, 4, 32, 48, 5, 54, 38, 5, 60, 5, 1, 62, 42, 44, 5, 68, 48, 72, 2, 30, 74, 32, 80, 54, 5, 84, 1, 60, 90, 62, 38, 3, 98, 68, 102, 6, 42, 104, 3, 72, 108, 44, 6, 110, 74, 3, 114, 48, 80
Offset: 1
Examples
For n=31, the n-th semiprime is A001358(31) = 91 = 7*13; 7 = 111_2 = 21_3 = 13_4 and 13 = 1101_2 = 111_3 = 31_4, so a(31) = 4. [corrected by _Jon E. Schoenfield_, Sep 23 2018] . Illustration of initial terms, n <= 25: . n | A001358(n) = p * q | b = a(n) | p and q in base b . ----+---------------------+-----------+------------------- . 1 | 4 2 2 | 1 | [1] [1] . 2 | 6 2 3 | 2 | [1,0] [1,1] . 3 | 9 3 3 | 1 | [1,1,1] [1,1,1] . 4 | ** 10 2 5 | 6 | [2] [5] . 5 | ** 14 2 7 | 8 | [2] [7] . 6 | 15 3 5 | 3 | [1,0] [1,2] . 7 | 21 3 7 | 3 | [1,0] [2,1] . 8 | ** 22 2 11 | 12 | [2] [11] . 9 | 25 5 5 | 1 | [1]^5 [1]^5 . 10 | ** 26 2 13 | 14 | [2] [13] . 11 | ** 33 3 11 | 12 | [3] [11] . 12 | ** 34 2 17 | 18 | [2] [17] . 13 | 35 5 7 | 2 | [1,0,1] [1,1,1] . 14 | ** 38 2 19 | 20 | [2] [19] . 15 | ** 39 3 13 | 14 | [3] [13] . 16 | ** 46 2 23 | 24 | [2] [23] . 17 | 49 7 7 | 1 | [1]^7 [1]^7 . 18 | ** 51 3 17 | 18 | [3] [17] . 19 | 55 5 11 | 4 | [1,1] [2,3] . 20 | ** 57 3 19 | 20 | [3] [19] . 21 | ** 58 2 29 | 30 | [2] [29] . 22 | ** 62 2 31 | 32 | [2] [31] . 23 | 65 5 13 | 4 | [1,1] [3,1] . 24 | ** 69 3 23 | 24 | [3] [23] . 25 | ** 74 2 37 | 38 | [2] [37] where p = A084126(n) and q = A084127(n), semiprimes marked with ** indicate terms of A138511, i.e. b = q + 1.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
import Data.List (genericIndex, unfoldr); import Data.Tuple (swap) import Data.Maybe (mapMaybe) a138510 n = genericIndex a138510_list (n - 1) a138510_list = mapMaybe f [1..] where f x | a010051' q == 0 = Nothing | q == p = Just 1 | otherwise = Just $ head [b | b <- [2..], length (d b p) == length (d b q)] where q = div x p; p = a020639 x d b = unfoldr (\z -> if z == 0 then Nothing else Just $ swap $ divMod z b) -- Reinhard Zumkeller, Dec 16 2014
-
Scheme
(define (A138510 n) (A251725 (A001358 n))) ;; Antti Karttunen, Dec 16 2014
Formula
Extensions
Wrong comment corrected by Reinhard Zumkeller, Dec 16 2014
Comments