cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A138519 Expansion of q * (psi(q^5) / psi(q))^2 in powers of q where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 3, -6, 11, -16, 24, -38, 57, -82, 117, -168, 238, -328, 448, -614, 834, -1114, 1480, -1966, 2592, -3384, 4398, -5704, 7361, -9436, 12045, -15344, 19470, -24576, 30922, -38822, 48576, -60548, 75259, -93342, 115454, -142360, 175104, -214958, 263262
Offset: 1

Views

Author

Michael Somos, Mar 23 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700)

Examples

			G.f. = q - 2*q^2 + 3*q^3 - 6*q^4 + 11*q^5 - 16*q^6 + 24*q^7 - 38*q^8 + 57*q^9 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q^(5/2)] / EllipticTheta[ 2, 0, q^(1/2)])^2, {q, 0, n}]; (* Michael Somos, Sep 16 2015 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( ( eta(x + A) / eta(x^5 + A) * ( eta(x^10 + A) / eta(x^2 + A) )^2)^2, n))};

Formula

Expansion of ((eta(q^10) / eta(q^2))^2 * eta(q) / eta(q^5))^2 in powers of q.
Euler transform of period 10 sequence [ -2, 2, -2, 2, 0, 2, -2, 2, -2, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u - v)^2 - v * (1 - u) * (1 - 5*u).
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (u - v)^4 - u * (1 - u) * (1 - 5*u) * v * (1 - v) * (1 - 5*v).
G.f. is a period 1 Fourier series which satisfies f(-1 / (10 t)) = (1/5) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A138518.
G.f.: x * (Product_{k>0} P(5, x^k) * P(10, x^k)^2)^2 where P(n, x) is the n-th cyclotomic polynomial.
a(n) = - A138520(n) unless n=0. -5 * a(n) = A138521(n) unless n=0.
Convolution inverse of A138516.
a(n) = -(-1)^n * A210458(n). - Michael Somos, Sep 16 2015
a(n) ~ -(-1)^n * exp(2*Pi*sqrt(n/5)) / (2 * 5^(5/4) * n^(3/4)). - Vaclav Kotesovec, Nov 15 2017

A225701 Expansion of chi(q)^5 / chi(q^5) in powers of q where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 5, 10, 15, 30, 55, 80, 120, 190, 285, 410, 585, 840, 1190, 1640, 2240, 3070, 4170, 5570, 7400, 9830, 12960, 16920, 21990, 28520, 36805, 47180, 60225, 76720, 97350, 122880, 154610, 194110, 242880, 302740, 376295, 466710, 577270, 711800, 875520, 1074790
Offset: 0

Views

Author

Michael Somos, May 17 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 5*q + 10*q^2 + 15*q^3 + 30*q^4 + 55*q^5 + 80*q^6 + 120*q^7 + 190*q^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -q, q^2]^5 / QPochhammer[ -q^5, q^10], {q, 0, n}];
    nmax=60; CoefficientList[Series[Product[(1-x^k)^5 * (1+x^k)^10 * (1+x^(10*k)) / ((1-x^(4*k))^5 * (1+x^(5*k))),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 13 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^10 * eta(x^5 + A) * eta(x^20 + A) / (eta(x + A)^5 * eta(x^4 + A)^5 * eta(x^10 + A)^2), n))};

Formula

Expansion of eta(q^2)^10 * eta(q^5) * eta(q^20) / (eta(q)^5 * eta(q^4)^5 * eta(q^10)^2) in powers of q.
Euler transform of period 20 sequence [ 5, -5, 5, 0, 4, -5, 5, 0, 5, -4, 5, 0, 5, -5, 4, 0, 5, -5, 5, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (20 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. of A223903.
a(n) = (-1)^n * A138521(n). a(n) = 5 * A210458(n) unless n=0.
a(n) ~ exp(2*Pi*sqrt(n/5)) / (2 * 5^(1/4) * n^(3/4)). - Vaclav Kotesovec, Oct 13 2015
Empirical: Sum_{n>=0} a(n)/exp(Pi*n) = sqrt(5) - 1. - Simon Plouffe, Mar 02 2021
Showing 1-2 of 2 results.