A138540 Moment sequence of tr(A) in USp(6).
1, 0, 1, 0, 3, 0, 15, 0, 104, 0, 909, 0, 9449, 0, 112398, 0, 1489410, 0, 21562086, 0, 336086022, 0, 5577242292, 0, 97671172836, 0, 1792348213025, 0, 34268124834495, 0, 679376016769260, 0, 13911118850603610, 0, 293220749128031010, 0
Offset: 0
Keywords
Examples
a(4)=3 because E[(tr(A))^4] = 3 for a random matrix A in USp(6).
Links
- David J. Grabiner and Peter Magyar, Random walks in Weyl chambers and the decomposition of tensor powers, Journal of Algebraic Combinatorics, vol. 2 (1993), no. 3, pp 239-260.
- Nicholas M. Katz and Peter Sarnak, Random Matrices, Frobenius Eigenvalues and Monodromy, AMS, 1999.
- Kiran S. Kedlaya and Andrew V. Sutherland, Hyperelliptic curves, L-polynomials and random matrices, arXiv:0803.4462 [math.NT], 2008-2010.
- G. Lachaud, On the distribution of the trace in the unitary symplectic group and the distribution of Frobenius, arXiv preprint arXiv:1506.06482 [math.AG], 2015.
Crossrefs
Cf. A138349.
Programs
-
Mathematica
F[m_][z_] := Sum[Binomial[m, j] (BesselI[2j-m, 2z] - BesselI[2j-m+2, 2z]), {j, 0, m}]; A[z_] := Det[Table[F[i+j-2][z], {i, 1, 3}, {j, 1, 3}]]; a[n_] := a[n] = Derivative[n][A][0]; Table[Print[n, " ", a[n]]; a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 17 2019 *)
Formula
mgf: A(z) = det[F_{i+j-2}(z)], 1<=i,j<=3, where F_m(z) = Sum_j binomial(m,j)(I_{2j-m}(2z)-I_{2j-m+2}(2z)) and I_k(z) is the hyperbolic Bessel function (of the first kind) of order k.
Comments