cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A136092 Bisection of A138540.

Original entry on oeis.org

1, 1, 3, 15, 104, 909, 9449, 112398, 1489410, 21562086, 336086022, 5577242292, 97671172836, 1792348213025, 34268124834495, 679376016769260, 13911118850603610, 293220749128031010
Offset: 0

Views

Author

N. J. A. Sloane, Mar 25 2008

Keywords

Formula

a(n) = Sum_{j=0..n+1} 180*(2n)!*(2j+2)!*(2n-3j+2)/(j!*(j+1)!*(j+2)!*(j+4)!*(n-j+1)!*(n-j+3)!) (conjectured). - Michael D. Weiner, May 11 2016
36*(n-1)*(2*n-1)*(2*n-3)*a(n-2)-4*(2*n-1)*(5*n^2+22*n+15)*a(n-1)+(n+3)*(n+5)*(n+6)*a(n) = 0 (conjectured). - Michael D. Weiner, May 14 2016

A002896 Number of 2n-step polygons on cubic lattice.

Original entry on oeis.org

1, 6, 90, 1860, 44730, 1172556, 32496156, 936369720, 27770358330, 842090474940, 25989269017140, 813689707488840, 25780447171287900, 825043888527957000, 26630804377937061000, 865978374333905289360, 28342398385058078078010, 932905175625150142902300
Offset: 0

Views

Author

Keywords

Comments

Number of walks with 2n steps on the cubic lattice Z^3 beginning and ending at (0,0,0).
If A is a random matrix in USp(6) (6 X 6 complex matrices that are unitary and symplectic) then a(n) is the 2n-th moment of tr(A^k) for all k >= 7. - Andrew V. Sutherland, Mar 24 2008
Diagonal of the rational function R(x,y,z,w) = 1/(1 - (w*x*y + w*x*z + w*y + x*z + y + z)). - Gheorghe Coserea, Jul 14 2016
Constant term in the expansion of (x + 1/x + y + 1/y + z + 1/z)^(2n). - Harry Richman, Apr 29 2020

Examples

			1 + 6*x + 90*x^2 + 1860*x^3 + 44730*x^4 + 1172556*x^5 + 32496156*x^6 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

C(2n, n) times A002893.
Related to diagonal of rational functions: A268545-A268555.
Row k=3 of A287318.

Programs

  • Maple
    a := proc(n) local k; binomial(2*n,n)*add(binomial(n,k)^2 *binomial(2*k,k), k=0..n); end;
    # second Maple program
    a:= proc(n) option remember; `if`(n<2, 5*n+1,
          (2*(2*n-1)*(10*n^2-10*n+3) *a(n-1)
           -36*(n-1)*(2*n-1)*(2*n-3) *a(n-2)) /n^3)
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Nov 02 2012
    A002896 := n -> binomial(2*n,n)*hypergeom([1/2, -n, -n], [1, 1], 4):
    seq(simplify(A002896(n)), n=0..16); # Peter Luschny, May 23 2017
  • Mathematica
    Table[Binomial[2n,n] Sum[Binomial[n,k]^2 Binomial[2k,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jan 24 2012 *)
    a[ n_] := If[ n < 0, 0, HypergeometricPFQ[ {-n, -n, 1/2}, {1, 1}, 4] Binomial[ 2 n, n]] (* Michael Somos, May 21 2013 *)
  • PARI
    a(n)=binomial(2*n,n)*sum(k=0,n,binomial(n, k)^2*binomial(2*k, k)) \\ Charles R Greathouse IV, Oct 31 2011
    
  • Sage
    def A002896():
        x, y, n = 1, 6, 1
        while True:
            yield x
            n += 1
            x, y = y, ((4*n-2)*((10*(n-1)*n+3)*y-18*(n-1)*(2*n-3)*x))//n^3
    a = A002896()
    [next(a) for i in range(17)]  # Peter Luschny, Oct 09 2013

Formula

a(n) = C(2*n, n)*Sum_{k=0..n} C(n, k)^2*C(2*k, k).
a(n) = (4^n*p(1/2, n)/n!)*hypergeom([-n, -n, 1/2], [1, 1], 4), where p(a, k) = Product_{i=0..k-1} (a+i).
E.g.f.: Sum_{n>=0} a(n)*x^(2*n)/(2*n)! = BesselI(0, 2*x)^3. - Corrected by Christopher J. Smyth, Oct 29 2012
D-finite with recurrence: n^3*a(n) = 2*(2*n-1)*(10*n^2-10*n+3)*a(n-1) - 36*(n-1)*(2*n-1)*(2*n-3)*a(n-2). - Vladeta Jovovic, Jul 16 2004
An asymptotic formula follows immediately from an observation of Bruce Richmond and me in SIAM Review - 31 (1989, 122-125). We use Hayman's method to find the asymptotic behavior of the sum of squares of the multinomial coefficients multi(n, k_1, k_2, ..., k_m) with m fixed. From this one gets a_n ~ (3/4)*sqrt(3)*6^(2*n)/(Pi*n)^(3/2). - Cecil C Rousseau (ccrousse(AT)memphis.edu), Mar 14 2006
G.f.: (1/sqrt(1+12*z)) * hypergeom([1/8,3/8],[1],64/81*z*(1+sqrt(1-36*z))^2*(2+sqrt(1-36*z))^4/(1+12*z)^4) * hypergeom([1/8, 3/8],[1],64/81*z*(1-sqrt(1-36*z))^2*(2-sqrt(1-36*z))^4/(1+12*z)^4). - Sergey Perepechko, Jan 26 2011
a(n) = binomial(2*n,n)*A002893(n). - Mark van Hoeij, Oct 29 2011
G.f.: (1/2)*(10-72*x-6*(144*x^2-40*x+1)^(1/2))^(1/2)*hypergeom([1/6, 1/3],[1],54*x*(108*x^2-27*x+1+(9*x-1)*(144*x^2-40*x+1)^(1/2)))^2. - Mark van Hoeij, Nov 12 2011
PSUM transform is A174516. - Michael Somos, May 21 2013
0 = (-x^2+40*x^3-144*x^4)*y''' + (-3*x+180*x^2-864*x^3)*y'' + (-1+132*x-972*x^2)*y' + (6-108*x)*y, where y is the g.f. - Gheorghe Coserea, Jul 14 2016
a(n) = [(x y z)^0] (x + 1/x + y + 1/y + z + 1/z)^(2*n). - Christopher J. Smyth, Sep 25 2018
a(n) = (1/Pi)^3*Integral_{0 <= x, y, z <= Pi} (2*cos(x) + 2*cos(y) + 2*cos(z))^(2*n) dx dy dz. - Peter Bala, Feb 10 2022
a(n) = Sum_{i+j+k=n, 0<=i,j,k<=n} multinomial(2n [i,i,j,j,k,k]). - Shel Kaphan, Jan 16 2023
Sum_{k>=0} a(k)/36^k = A086231 = (sqrt(3)-1) * (Gamma(1/24) * Gamma(11/24))^2 / (32*Pi^3). - Vaclav Kotesovec, Apr 23 2023
G.f.: HeunG(1/9,1/12,1/4,3/4,1,1/2,4*x)^2 (see Hassani et al.). - Stefano Spezia, Feb 16 2025

A138547 Moment sequence of tr(A^6) in USp(6).

Original entry on oeis.org

1, -1, 6, -15, 90, -310, 1860, -7455, 44730, -195426, 1172556, -5416026, 32496156, -156061620, 936369720, -4628393055, 27770358330, -140348412490, 842090474940, -4331544836190, 25989269017140, -135614951248140, 813689707488840, -4296741195214650, 25780447171287900
Offset: 0

Views

Author

Andrew V. Sutherland, Mar 24 2008

Keywords

Comments

If A is a random matrix in the compact group USp(6) (6 X 6 complex matrices that are unitary and symplectic), then a(n) = E[(tr(A^6))^n] is the n-th moment of the trace of A^6. See A138547 for central moments.

Examples

			a(3) = -15 because E[(tr(A^6))^3] = -15 for a random matrix A in USp(6).
		

Crossrefs

Formula

mgf is A(z) = det[F_{i+j-2}(z)], 1<=i,j<=3, where F_m(z) = Sum_j binomial(m,j)(B_{(2j-m)/6}(z)-B_{(2j-m+2)/6}(z)) and B_v(z)=0 for non-integer v and otherwise B_v(z)=I_v(2z) with I_v(z) is the hyperbolic Bessel function (of the first kind) of order v.

A138544 Moment sequence of tr(A^4) in USp(6).

Original entry on oeis.org

1, -1, 4, -9, 42, -130, 660, -2415, 12810, -51786, 281736, -1216446, 6727644, -30440124, 170316432, -798126615, 4504487130, -21692469370, 123255492360, -606672653730, 3465702008340, -17366224451940, 99645553785960, -506814533253210, 2918768920720380, -15034038412333500
Offset: 0

Views

Author

Andrew V. Sutherland, Mar 24 2008

Keywords

Comments

If A is a random matrix in the compact group USp(6) (6 X 6 complex matrices which are unitary and symplectic), then a(n) = E[(tr(A^4))^n] is the n-th moment of the trace of A^4. See A138545 for central moments.

Examples

			a(3) = -9 because E[(tr(A^4))^3] = -9 for a random matrix A in USp(6).
		

Crossrefs

Formula

mgf is A(z) = det[F_{i+j-2}(z)], 1<=i,j<=3, where F_m(z) = Sum_j binomial(m,j)(B_{(2j-m)/4}(z)-B_{(2j-m+2)/4}(z)) and B_v(z)=0 for non-integer v and otherwise B_v(z)=I_v(2z), with I_v(z) the hyperbolic Bessel function (of the first kind) of order v.

A138546 Moment sequence of tr(A^5) in USp(6).

Original entry on oeis.org

1, 0, 4, 0, 42, 0, 660, 0, 12810, 0, 281736, 0, 6727644, 0, 170316432, 0, 4504487130, 0, 123255492360, 0, 3465702008340, 0, 99645553785960, 0, 2918768920720380, 0, 86852063374902000, 0, 2619552500788984200, 0, 79939673971478231760, 0
Offset: 0

Views

Author

Andrew V. Sutherland, Mar 24 2008

Keywords

Comments

If A is a random matrix in the compact group USp(6) (6 X 6 complex matrices that are unitary and symplectic), then a(n) = E[(tr(A^5))^n] is the n-th moment of the trace of A^5.

Examples

			a(4) = 42 because E[(tr(A^5))^4] = 42 for a random matrix A in USp(6).
		

Crossrefs

Cf. A138540.

Formula

mgf is A(z) = det[F_{i+j-2}(z)], 1<=i,j<=3, where F_m(z) = Sum_j binomial(m,j)(B_{(2j-m)/5}(z)-B_{(2j-m+2)/5}(z)) and B_v(z)=0 for non-integer v and otherwise B_v(z)=I_v(2z) with I_v(z) the hyperbolic Bessel function (of the first kind) of order v.

A138549 Moment sequence of t^2 coefficient in det(tI-A) for random matrix A in USp(6).

Original entry on oeis.org

1, 1, 2, 5, 16, 62, 282, 1459, 8375, 52323, 350676, 2493846, 18659787, 145918295, 1186129168, 9978055080, 86545684565, 771571356565, 7051538798490, 65913863945775, 628919704903746, 6114899366942556, 60492393411513722
Offset: 0

Views

Author

Andrew V. Sutherland, Mar 24 2008

Keywords

Comments

Let the random variable X be the coefficient of t^2 in the characteristic polynomial det(tI-A) of a random matrix in USp(6) (6x6 complex matrices that are unitary and symplectic). Then a(n) = E[X^n].
Let L_p(T) be the L-polynomial (numerator of the zeta function) of a genus 3 curve C. Under a generalized Sato-Tate conjecture, for almost all C, a(n) is the n-th moment of the coefficient of t^2 in L_p(t/sqrt(p)), as p varies.
See A138550 for central moments.

Examples

			a(3) = 5 because E[X^3] = 5 for X the t^2 coeff of det(tI-A) in USp(6).
		

Crossrefs

Formula

See Prop. 12 of first Kedlaya-Sutherland reference.

A138550 Central moment sequence of t^2 coefficient in det(tI-A) for random matrix A in USp(6).

Original entry on oeis.org

1, 0, 1, 1, 5, 16, 75, 366, 2016, 11936, 75678, 507575, 3575693, 26289408, 200709665, 1584482382, 12888498820, 107698656192, 922140333952, 8072379904752, 72108967554160, 656190909218560, 6074106708205200, 57118680813847840
Offset: 0

Views

Author

Andrew V. Sutherland, Mar 24 2008

Keywords

Comments

Let the random variable X be the coefficient of t^2 in the characteristic polynomial det(tI-A) of a random matrix in USp(6) (6x6 complex matrices that are unitary and symplectic). Then a(n) = E[(X-1)^n] is the n-th central moment of X since E[X]=1 (see A138549).
Dimension of space of invariant tensors in second fundamental representation of Sp(6). - Bruce Westbury, Dec 05 2014

Examples

			a(4) = 5 because E[(X-1)^4] = 5 for X the t^2 coeff of det(tI-A) in USp(6).
		

Crossrefs

Programs

  • LiE
    p_tensor(n,[0,1,0],C3)|[0,0,0]

Formula

a(n) = Sum_{k=0..n} binomial(n,k)(-1)^{n-k}*A138549(k).

A138541 Moment sequence of tr(A^2) in USp(6).

Original entry on oeis.org

1, -1, 3, -7, 24, -75, 285, -1036, 4242, -16926, 73206, -311256, 1403028, -6247527, 29082339, -134138290, 640672890, -3038045010, 14818136190, -71858704710, 356665411440, -1761879027090, 8874875097270, -44526516209280, 227135946200940, -1154738374364100, 5955171596514900
Offset: 0

Views

Author

Andrew V. Sutherland, Mar 24 2008

Keywords

Comments

If A is a random matrix in the compact group USp(6) (6 X 6 complex matrices which are unitary and symplectic), then a(n) = E[(tr(A^2))^n] is the n-th moment of the trace of A^2. See A138542 for central moments.

Examples

			a(4) = 24 because E[(tr(A^2))^4] = 24 for a random matrix A in USp(6).
		

Crossrefs

Formula

mgf is A(z) = det[F_{i+j-2}(z)], 1<=i,j<=g, where F_m(z) = Sum_j binomial(m,j)(B_{(2j-m)/2}(z)-B_{(2j-m+2)/2}(z)) and B_v(z)=0 for non-integer k and otherwise B_v(z)=I_v(2z) with I_v(z) is the hyperbolic Bessel function (of the first kind) of order v.

A138542 Central moment sequence of tr(A^2) in USp(6).

Original entry on oeis.org

1, 0, 2, 0, 11, 1, 95, 36, 1099, 982, 15792, 25070, 269577, 638288, 5299294, 16604434, 117008255, 445625880, 2840754502, 12378561732, 74476435277, 355955681205, 2077501474055, 10581475229776, 60943012224801, 324482737520986
Offset: 0

Views

Author

Andrew V. Sutherland, Mar 24 2008

Keywords

Comments

If A is a random matrix in the compact group USp(6) (6x6 complex matrices which are unitary and symplectic), then a(n) = E[(tr(A^2)+1)^n] is the n-th central moment of the trace of A^2, since E[tr(A^2)] = -1 (see A138541).

Examples

			a(5) = 1 because E[(tr(A^2)+1)^5] = 1 for a random matrix A in USp(6).
		

Crossrefs

Formula

mgf is A(z)=e^zF(z) where F(z) is the mgf of A138541.

A138543 Moment sequence of tr(A^3) in USp(6).

Original entry on oeis.org

1, 0, 3, 0, 26, 0, 345, 0, 5754, 0, 110586, 0, 2341548, 0, 53208441, 0, 1276027610, 0, 31930139670, 0, 826963069140, 0, 22035414489270, 0, 601361536493340, 0, 16749316314679500, 0, 474777481850283240, 0, 13665774112508864385, 0
Offset: 0

Views

Author

Andrew V. Sutherland, Mar 24 2008

Keywords

Comments

If A is a random matrix in the compact group USp(6) (6 X 6 complex matrices which are unitary and symplectic), then a(n) = E[(tr(A^3))^n] is the n-th moment of the trace of A^3.

Examples

			a(4) = 26 because E[(tr(A^2))^4] = 26 for a random matrix A in USp(6).
		

Crossrefs

Cf. A138540.

Formula

mgf is A(z) = det[F_{i+j-2}(z)], 1<=i,j<=3, where F_m(z) = Sum_j binomial(m,j)(B_{(2j-m)/3}(z)-B_{(2j-m+2)/3}(z)) and B_v(z)=0 for non-integer v and otherwise B_v(z)=I_v(2z) with I_v(z) is the hyperbolic Bessel function (of the first kind) of order v.
Showing 1-10 of 14 results. Next