cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A137366 Subsequence of A137365 where it is possible to choose p1, p2, p3 so that p1+p2+p3 = prime.

Original entry on oeis.org

1483, 5381, 6271, 7229, 9181, 11897, 13103, 13841, 14489, 17107, 20357, 25747, 26711, 27917, 30161, 30259, 31247, 32579, 36677, 36899, 36901, 42083, 48817, 54181, 55511, 55691, 56377, 57637, 64151, 66347, 69389, 75167, 76031, 76123
Offset: 1

Views

Author

Vladimir Joseph Stephan Orlovsky, Apr 09 2008, Apr 14 2008

Keywords

Comments

36161 is the first number that is in A137365 but not in the present sequence. See A138556.

Examples

			1483=3^3+5^3+11^3, 3+5+11=17;
7229=3^3+7^3+19^3, 3+7+19=29.
		

Crossrefs

Programs

  • Mathematica
    Array[r, 99]; Array[y, 99]; For[i = 0, i < 10^2, r[i] = y[i] = 0; i++ ]; z = 4^2; n = 0; For[i1 = 1, i1 < z, a = Prime[i1]; a2 = a^3; For[i2 = i1 + 1, i2 < z, b = Prime[i2]; b2 = b^3; For[i3 = i2 + 1, i3 < z, c = Prime[i3]; c2 = c^3; p = a2 + b2 + c2; p3 = a + b + c; If[PrimeQ[p] && PrimeQ[p3], Print[a2, " + ", b2, " + ", c2, " = ", p, "; ", a, " + ", b, " + ", c, " = ", p3]; n++; r[n] = p]; i3++ ]; i2++ ]; i1++ ]; Sort[Array[r, 71]]
    lst = {}; Do[q = Prime@a; r = Prime@b; s = Prime@c; p = q^3 + r^3 + s^3; t = q + r + s; If[PrimeQ@p && PrimeQ@t, AppendTo[lst, p]], {a, 14}, {b, a - 1}, {c, b - 1}]; Take[Sort@lst, 35] (* Robert G. Wilson v, Apr 13 2008 *)
Showing 1-1 of 1 results.