Original entry on oeis.org
36161, 36583, 56897, 59093, 67733, 69073, 74177, 81901, 98533, 98837, 104021, 110629, 110879, 110933, 149759, 155861, 157933, 173087, 173293, 175463, 179999, 199081, 207719, 217573, 223919, 229321, 235171, 235243, 240479
Offset: 1
A137365
Prime numbers n such that n = p1^3 + p2^3 + p3^3, a sum of cubes of 3 distinct prime numbers.
Original entry on oeis.org
1483, 5381, 6271, 7229, 9181, 11897, 13103, 13841, 14489, 17107, 20357, 25747, 26711, 27917, 30161, 30259, 31247, 32579, 36161, 36583, 36677, 36899, 36901, 42083, 48817, 54181, 55511, 55691, 56377, 56897, 57637, 59093, 64151, 66347
Offset: 1
1483=3^3+5^3+11^3, 5381=17^3+7^3+5^3, 6271=3^3+11^3+17^3, etc.
-
# From R. J. Mathar: (Start)
isA030078 := proc(n) local cbr; cbr := floor(root[3](n)) ; if cbr^3 = n and isprime(cbr) then true ; else false; fi ; end:
isA137365 := proc(n) local p1,p2,p3,p3cub ; if isprime(n) then p1 := 2 ; while p1^3 <= n-16 do p2 := nextprime(p1) ; while p1^3+p2^3 <= n-8 do p3cub := n-p1^3-p2^3 ; if p3cub> p2^3 and isA030078(p3cub) then RETURN(true) ; fi ; p2 := nextprime(p2) ; od: p1 := nextprime(p1) ; od; RETURN(false) ; else RETURN(false) ; fi ; end:
for i from 1 do if isA137365( ithprime(i)) then printf("%d\n",ithprime(i)) ; fi ; od:
# (End)
-
Array[r, 99]; Array[y, 99]; For[i = 0, i < 10^2, r[i] = y[i] = 0; i++ ]; z = 4^2; n = 0; For[i1 = 1, i1 < z, a = Prime[i1]; a2 = a^3; For[i2 = i1 + 1, i2 < z, b = Prime[i2]; b2 = b^3; For[i3 = i2 + 1, i3 < z, c = Prime[i3]; c2 = c^3; p = a2 + b2 + c2; If[PrimeQ[p], Print[a2, " + ", b2, " + ", c2, " = ", p]; n++; r[n] = p]; i3++ ]; i2++ ]; i1++ ]; Sort[Array[r, 88]] (* Vladimir Joseph Stephan Orlovsky *)
lst = {}; Do[p = Prime[q]^3 + Prime[r]^3 + Prime[s]^3; If[PrimeQ@ p, AppendTo[lst, p]], {q, 13}, {r, q - 1}, {s, r - 1}]; Take[Sort@ lst, 36] (* Robert G. Wilson v, Apr 13 2008 *)
nn=20; lim=Prime[nn]^3+3^3+5^3; Union[Select[Total[#^3]& /@ Subsets[Prime[Range[2,nn]], {3}], #Harvey P. Dale, Jan 15 2011 *)
-
c=0; forprime(p=1,10^6, isA138853(p) & write("b137365.txt",c++," ",p)) \\ M. F. Hasler, Apr 13 2008
Showing 1-2 of 2 results.
Comments