A138560 Number of "squashed-tree" graphs with n central nodes, the labeled case, not allowing the direct link between L and R.
0, 1, 14, 265, 6830, 230511, 9813824, 510662531, 31637636492, 2283908878873, 188734671539720, 17594292380775969, 1828013405513246504, 209549687662076216495, 26278678714657914834056, 3579272018433287670435859, 526228717479514441247416016, 83065444843454983344683712849
Offset: 0
Keywords
Examples
a(1) = 1: L--1--R. a(2) = 14: ===== . 1 ./.\ L . R (number = 1) .\./ . 2 ===== . 1 ./.\ L . R (number = 4) .\.. . 2 ===== . 1 ./|\ L | R (number = 1) .\|/ . 2 ===== . 1 ./|\ L | R (number = 4) .\|. . 2 ===== . 1 ./|\ L | R (number = 2) . |. . 2 ===== . 1 . |\ L | R (number = 2) .\|. . 2 ===== Total = 14
Crossrefs
Cf. A138562.
Programs
-
PARI
{ a(n) = local(p,q,m); p=partitions(n); sum(j=1,#p, q=p[j]; m=vector(n); for(i=1,#q,m[q[i]]++); n! * prod(i=1,#q,q[i]^(q[i]-2)/q[i]!) / prod(i=1,#m,m[i]!) * (prod(i=1,#q,4^q[i]-1)-2^#q*prod(i=1,#q,2^q[i]-1) ) ) } \\ Max Alekseyev, May 10 2009
Formula
Although we have not written out all the details of the proof, it appears that a(n) ~ 2^n*n^(n-2).
Extensions
Edited and extended by Max Alekseyev, May 10 2009
Comments