A138618 Triangle of exponentials of Mangoldt function M(n) read by rows, in which row products give the natural numbers.
1, 2, 1, 3, 1, 1, 2, 2, 1, 1, 5, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 2, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
1 = 1 2*1 = 2 3*1*1 = 3 2*2*1*1 = 4 5*1*1*1*1 = 5 1*3*2*1*1*1 = 6 7*1*1*1*1*1*1 = 7 2*2*1*2*1*1*1*1 = 8 3*1*3*1*1*1*1*1*1 = 9 1*5*1*1*2*1*1*1*1*1 = 10 11*1*1*1*1*1*1*1*1*1*1 = 11 1*1*2*3*1*2*1*1*1*1*1*1 = 12 13*1*1*1*1*1*1*1*1*1*1*1*1 = 13
Links
- Eric Weisstein's World of Mathematics, Mangoldt Function.
Programs
-
Mathematica
Flatten[Table[Table[If[Mod[n, k] == 0, Exp[MangoldtLambda[n/k]], 1], {k, 1, n}], {n, 1, 14}]] (* Mats Granvik, May 23 2013 *)
-
PARI
M(n) = ispower(n, , &n); if(isprime(n), n, 1); \\ A014963 T(n,k) = if (n % k, 1, M(n/k)); row(n) = vector(n, k, T(n,k)); \\ Michel Marcus, Mar 03 2023
Formula
T(n,k) = A014963(n/k) if n mod k = 0, otherwise 1. - Mats Granvik, May 23 2013
Comments