cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138633 Primes of the form 17*k - 9.

Original entry on oeis.org

59, 127, 229, 263, 331, 433, 467, 569, 739, 773, 977, 1181, 1249, 1283, 1453, 1487, 1657, 1759, 1861, 1997, 2099, 2269, 2371, 2473, 2609, 2677, 2711, 3119, 3187, 3221, 3323, 3391, 3527, 3697, 3833, 4003, 4139, 4241, 4513, 4547, 4649, 4751, 5023, 5227, 5261
Offset: 1

Views

Author

Keywords

Examples

			17*4 - 9 = 59, 17*8 - 9 = 127, 17*14 - 9 = 229, 17*16 - 9 = 263, 17*20 - 9 = 331, 17*26 - 9 = 433, 17*28 - 9 = 467, ...
		

Crossrefs

Cf. A138634.
Primes congruent to k mod 17: A129484 (k=1), A140544 (k=2), A092074 (k=3), A094657 (k=4), A138623 (k=5), A140545 (k=6), A138629 (k=7), this sequence (k=8), A138631 (k=9), A138627 (k=10), A140542 (k=11), A138625 (k=12), A141865 (k=13), A140540 (k=14), A140543 (k=15), A140541 (k=16).

Programs

  • Mathematica
    a={};Do[x=17*n-9;If[PrimeQ[x],AppendTo[a,x]],{n,10^2}];a
    Select[17*Range[400]-9,PrimeQ] (* Harvey P. Dale, Jul 25 2020 *)

Formula

From A.H.M. Smeets, Sep 05 2019: (Start)
n ~ (1/16) * a(n)/log(a(n)).
n ~ (1/16) * Integral_{x=2..a(n)} dx/log(x). (End)

Extensions

More terms from N. J. A. Sloane, Jul 11 2008