cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138736 Inverse binomial transform of A138737.

Original entry on oeis.org

1, 1, 4, 36, 368, 5200, 90432, 1884736, 45817088, 1273874688, 39891461120, 1389816423424, 53334303584256, 2235679577657344, 101651458028158976, 4983219643056537600, 262026143585449607168, 14711289584591513387008
Offset: 0

Views

Author

Paul D. Hanna, Apr 05 2008

Keywords

Comments

The n-th term of the n-th inverse binomial transform of A138737 equals (n+1)^(n-1) for n>=0.
Related to LambertW(-x)/(-x) = Sum_{n>=0} (n+1)^(n-1)*x^n/n!.

Crossrefs

Cf. A138737.

Programs

  • PARI
    {a(n)=local(A=[1]);for(k=1,n,A=concat(A,0); A[k+1]=(k+1)^(k-1)-Vec(subst(Ser(A),x,x/(1+(k-1)*x+x*O(x^k)))/(1+(k-1)*x))[k+1]);A[n+1]}

Formula

O.g.f. satisfies: [x^n] A( x/(1+(n-1)*x) )/(1+(n-1)*x) = (n+1)^(n-1) for n>=0.
E.g.f. satisfies: [x^n] A(x)*exp(-(n-1)*x) = (n+1)^(n-1)/n! for n>=0.
a(n) ~ (1 + LambertW(exp(-1)))^(3/2)*n^(n-1) / (exp(n-2)*LambertW(exp(-1))^(n-1)). - Vaclav Kotesovec, Oct 30 2017