cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138741 Expansion of q^(-1/2) * eta(q)^3 * eta(q^4) * eta(q^12) / (eta(q^2)^2 * eta(q^3)) in powers of q (unsigned).

Original entry on oeis.org

1, 3, 2, 0, 1, 0, 2, 6, 2, 0, 0, 0, 3, 3, 2, 0, 0, 0, 2, 6, 2, 0, 2, 0, 1, 6, 2, 0, 0, 0, 2, 0, 4, 0, 0, 0, 2, 9, 0, 0, 1, 0, 4, 6, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 6, 2, 0, 2, 0, 1, 6, 4, 0, 0, 0, 0, 6, 2, 0, 0, 0, 4, 3, 2, 0, 2, 0, 2, 6, 0, 0, 0, 0, 3, 0, 2
Offset: 0

Views

Author

Michael Somos, Mar 27 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 3*x + 2*x^2 + x^4 + 2*x^6 + 6*x^7 + 2*x^8 + 3*x^12 + 3*x^13 + ...
G.f. = q + 3*q^3 + 2*q^5 + q^9 + 2*q^13 + 6*q^15 + 2*q^17 + 3*q^25 + 3*q^27 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSum[ 2 n + 1, (-1)^Quotient[#, 6] {1, 0, 2, 0, 1, 0}[[Mod[#, 6, 1]]] &]]; (* Michael Somos, Sep 08 2015 *)
    a[ n_] := SeriesCoefficient[ x^(-1/2) (EllipticTheta[ 2, 0, x]^2 + 3 EllipticTheta[ 2, 0, x^3]^2) / 4, {x, 0, n}]; (* Michael Somos, Sep 08 2015 *)
    a[ n_] := If[ n < 0, 0, Times @@ (Which[ # < 3, 1, # == 3, 2 - (-1)^#2, Mod[#, 12] < 6, #2 + 1, True, 1 - Mod[#2, 2]] & @@@ FactorInteger[2 n + 1])]; (* Michael Somos, Sep 08 2015 *)
    QP = QPochhammer; s = QP[q^2]^7*QP[q^3]*QP[q^12]^2 / (QP[q]^3*QP[q^4]^2* QP[q^6]^3) + O[q]^90; CoefficientList[s, q] (* Jean-François Alcover, Nov 24 2015 *)
  • PARI
    {a(n) = if( n<0, 0, sumdiv( 2*n + 1, d, (-1)^(d\6) * [0, 1, 0, 2, 0, 1][d%6 + 1]))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, n = 2*n + 1; A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p==3, 2 - (-1)^e, p%12<6, e+1, 1-e%2 )))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^7 * eta(x^3 + A) * eta(x^12 + A)^2 / (eta(x + A)^3 * eta(x^4 + A)^2 * eta(x^6 + A)^3), n))};

Formula

Expansion of q^(-1/2) * (theta_2(q)^2 + 3 * theta_2(q^3)^2) / 4 in powers of q.
Expansion of phi(q) * psi(q) * psi(q^3) / phi(q^3) in powers of q where phi(), psi() are Ramanujan theta functions.
Euler transform of period 12 sequence [ 3, -4, 2, -2, 3, -2, 3, -2, 2, -4, 3, -2, ...].
Moebius transform is period 24 sequence [ 1, -1, 2, 0, 1, -2, -1, 0, -2, -1, -1, 0, 1, 1, 2, 0, 1, 2, -1, 0, -2, 1, -1, 0, ...].
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = 1 + (-1)^e, b(p^e) = e+1 if p == 1, 5 (mod 12), b(p^e) = (1+(-1)^e)/2 if p = 7, 11 (mod 12).
G.f. is a period 1 Fourier series which satisfies f(-1 / (48 t)) = 6 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A132003.
a(6*n + 3) = a(6*n + 5) = 0.
a(n) = (-1)^n * A116604(n). a(2*n) = A008441(n).
a(6*n) = A002175(n). a(6*n + 1) = 3 * A008441(n). a(6*n + 2) = 2 * A121444(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 (A019669). - Amiram Eldar, Dec 28 2023