A138782 a(n) = n*(3*n-1)*n!/2.
1, 10, 72, 528, 4200, 36720, 352800, 3709440, 42456960, 526176000, 7025356800, 100590336000, 1538074137600, 25020169574400, 431532541440000, 7866968997888000, 151167156940800000, 3053932257632256000
Offset: 1
Keywords
Links
- Guo-Niu Han, An explicit expansion formula for the powers of the Euler product in terms of partition hook lengths, arXiv:0804.1849v3 [math.CO] 9 May 2008 (pp. 5, 28).
- Guo-Niu Han, The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications, arXiv:0805.1398v1 [math.CO] 9 May 2008 (p. 4).
Programs
-
Maple
seq((1/2)*n*(3*n-1)*factorial(n),n=1..18);
-
Mathematica
Table[n(3n-1) n!/2,{n,20}] (* Harvey P. Dale, Jun 06 2022 *)
Formula
a(n)=Sum((n+j-1)n!, j=1..n).
E.g.f.: x*(1 + 2*x)/(1 - x)^3. - Ilya Gutkovskiy, May 12 2017
Comments