A138783 a(n) = n*(n - 1)*(27*n^2 - 67*n + 74)*n!/24.
0, 8, 174, 2856, 41400, 579600, 8184960, 119105280, 1804965120, 28631232000, 476407008000, 8319778790400, 152431242163200, 2927359840204800, 58858423303680000, 1237373793976320000, 27161714759122944000
Offset: 1
Links
- Guo-Niu Han, An explicit expansion formula for the powers of the Euler product in terms of partition hook lengths, arXiv:0804.1849 [math.CO], 2008 (p. 29).
Programs
-
Maple
seq((1/24)*n*(n-1)*(27*n^2-67*n+74)*factorial(n),n=1..17);
-
Mathematica
Table[(n(n-1)(27n^2-67n+74)n!)/24,{n,20}] (* Harvey P. Dale, Jan 14 2015 *) CoefficientList[Series[x^2*(4 + 9*x + 14*x^2)/(1 - x)^5,{x,0,17}],x]Table[n!,{n,0,17}] (* Stefano Spezia, Jan 03 2023 *)
Formula
D-finite with recurrence -(n-2)*(27*n^2-121*n+168)*a(n) +n^2*(27*n^2-67*n+74)*a(n-1)=0. - R. J. Mathar, Jul 22 2022
E.g.f.: x^2*(4 + 9*x + 14*x^2)/(1 - x)^5. - Stefano Spezia, Jan 03 2023
Comments