A138791 Least number k such that A070635(k) = n.
1, 11, 16, 15, 14, 38, 34, 29, 28, 19, 49, 76, 68, 98, 269, 79, 458, 397, 379, 299, 779, 769, 689, 898, 799, 3889, 4898, 5599, 6698, 7996, 8798, 9599, 19888, 16999, 18899, 67979, 58898, 39899, 59998, 49999, 89789, 189989, 89998, 98999, 489898, 298999
Offset: 0
Examples
a(2) = 16: 1+6 = 7 and 16 mod 7 = 2. - _Robert Israel_, Dec 30 2015
Links
- Robert G. Wilson v and Robert Israel, Table of n, a(n) for n = 0..514(n = 0..79 from Robert G. Wilson v)
Programs
-
Haskell
a199263 n = (fromJust $ elemIndex n a070635_list) + 1 -- Reinhard Zumkeller, Nov 07 2011
-
Maple
extend:= proc(d, x, sx) global A, nmin; local y, n, tmax; if d = 0 then n:= x mod sx; if not assigned(A[n]) then A[n]:= x; if n = nmin then for nmin from n while assigned(A[nmin]) do od: fi; fi else tmax:= 9*d + sx; if nmin >= tmax then return fi; for y from max(0, nmin + 10 - tmax) to 9 do procname(d-1,10*x+y,sx+y) od: fi end proc: A[0]:= 1: nmin:= 1: for d from 2 while nmin < 101 do extend(d,0,0) od: seq(A[i],i=0..nmin-1); # Robert Israel, Dec 29 2015
-
Mathematica
t = Table[0, {100}]; Do[ a = Mod[n, Plus @@ IntegerDigits@n]; If[a < 100 && t[[a + 1]] == 0, t[[a + 1]] = n; Print[{a, n}]], {n, 2^31}] lnk[n_]:=Module[{k=1},While[Mod[k,Total[IntegerDigits[k]]]!=n,k++];k]; Array[lnk, 50, 0] (* Harvey P. Dale, Oct 11 2014 *)
Extensions
Definition corrected by Robert Israel, Dec 29 2015
Comments