A138854 Numbers which are the sum of three cubes of distinct primes.
160, 378, 476, 495, 1366, 1464, 1483, 1682, 1701, 1799, 2232, 2330, 2349, 2548, 2567, 2665, 3536, 3555, 3653, 3871, 4948, 5046, 5065, 5264, 5283, 5381, 6252, 6271, 6369, 6587, 6894, 6992, 7011, 7118, 7137, 7210, 7229, 7235, 7327, 7453, 8198, 8217, 8315
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms 1..621 from R. J. Mathar)
- Index to sequences related to sums of cubes.
Crossrefs
Programs
-
Maple
isA030078 := proc(n) local f ; if n < 8 then false; else f := ifactors(n)[2] ; if nops(f) = 1 and op(2,op(1,f)) = 3 then true; else false; end if; end if; end proc: isA138854 := proc(n) local i,j,p,q,r,rcub ; for i from 1 do p := ithprime(i) ; if p^3+(p+1)^3+(p+2)^3 > n then return false; end if; for j from i+1 do q := ithprime(j) ; rcub := n-q^3-p^3 ; if rcub <= q^3 then break; fi ; if isA030078(rcub) then return true; end if; end do: end do: end proc: for n from 5 do if isA138854(n) then print(n); end if; end do: # R. J. Mathar, Jun 09 2014
-
Mathematica
f[upto_]:=Module[{maxp=PrimePi[Floor[Power[upto, (3)^-1]]]}, Select[Union[Total/@(Subsets[Prime[Range[maxp]],{3}]^3)],#<=upto&]]; f[9000] (* Harvey P. Dale, Mar 21 2011 *)
-
PARI
isA138854(n)={ if( n%2, isA138853(n), isA120398(n-8)) } for( n=1,10^4, isA138854(n) & print1(n", "))
Comments