cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138854 Numbers which are the sum of three cubes of distinct primes.

Original entry on oeis.org

160, 378, 476, 495, 1366, 1464, 1483, 1682, 1701, 1799, 2232, 2330, 2349, 2548, 2567, 2665, 3536, 3555, 3653, 3871, 4948, 5046, 5065, 5264, 5283, 5381, 6252, 6271, 6369, 6587, 6894, 6992, 7011, 7118, 7137, 7210, 7229, 7235, 7327, 7453, 8198, 8217, 8315
Offset: 1

Views

Author

M. F. Hasler, Apr 13 2008

Keywords

Comments

This is a subsequence of A024975. The odd terms of this sequence are A138853, the even terms are 8+{ even terms of A120398 }. Thus primes in this sequence, A137365, are the same as primes in A138853.

Crossrefs

Cf. A024975 (a^3+b^3+c^3, a>b>c>0), A138853 (odd terms of this), A120398, A137365 (primes in A138853 / A138854).

Programs

  • Maple
    isA030078 := proc(n)
        local f ;
        if n < 8 then
            false;
        else
            f := ifactors(n)[2] ;
            if nops(f) = 1 and op(2,op(1,f)) = 3 then
                true;
            else
                false;
            end if;
        end if;
    end proc:
    isA138854 := proc(n)
        local i,j,p,q,r,rcub ;
        for i from 1 do
            p := ithprime(i) ;
            if p^3+(p+1)^3+(p+2)^3 > n then
                return false;
            end if;
            for j from i+1 do
                q := ithprime(j) ;
                rcub := n-q^3-p^3 ;
                if rcub <= q^3 then
                    break;
                fi ;
                if isA030078(rcub) then
                    return true;
                end if;
            end do:
        end do:
    end proc:
    for n from 5 do
        if isA138854(n) then
            print(n);
        end if;
    end do: # R. J. Mathar, Jun 09 2014
  • Mathematica
    f[upto_]:=Module[{maxp=PrimePi[Floor[Power[upto, (3)^-1]]]}, Select[Union[Total/@(Subsets[Prime[Range[maxp]],{3}]^3)],#<=upto&]]; f[9000]  (* Harvey P. Dale, Mar 21 2011 *)
  • PARI
    isA138854(n)={ if( n%2, isA138853(n), isA120398(n-8)) }
    for( n=1,10^4, isA138854(n) & print1(n", "))

Formula

A138854 = { p(i)^3+p(j)^3+p(k)^3 ; i>j>k>0 } = A138853 union { p(i)^3+p(j)^3+8 ; i>j>1}