cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138882 Triangle read by rows: row n lists divisors of n-th even superperfect number A061652(n).

Original entry on oeis.org

1, 2, 1, 2, 4, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 32, 64, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384
Offset: 1

Views

Author

Omar E. Pol, Apr 11 2008

Keywords

Comments

The number of divisors of n-th even superperfect number is equal to A000043(n), then row n has A000043(n) terms.
The sum of divisors of n-th even superperfect number is equal to n-th Mersenne prime A000668(n), then n-th row sum is equal to A000668(n).

Examples

			Triangle begins:
  1, 2
  1, 2, 4
  1, 2, 4, 8, 16
  1, 2, 4, 8, 16, 32, 64
  1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096
  ...
==============================================================
..... Mersenne ..............................................
....... prime ...............................................
n ... A000668(n) = Sum of divisors of A061652(n) .............
==============================================================
1 ........ 3 ... = 1+2
2 ........ 7 ... = 1+2+4
3 ....... 31 ... = 1+2+4+8+16
4 ...... 127 ... = 1+2+4+8+16+32+64
5 ..... 8191 ... = 1+2+4+8+16+32+64+128+256+512+1024+2048+4096
		

Crossrefs

Programs

  • Mathematica
    Flatten[Divisors[2^(MersennePrimeExponent[Range[7]]-1)]] (* Harvey P. Dale, Apr 28 2022 *)