A138896 Ratio of (2n-1)! to number of zeros in Sylvester matrix of polynomial of n degree with all nonzero coefficients.
3, 15, 280, 11340, 798336, 86486400, 13343616000, 2778808032000, 750895681536000, 255454710858547200, 106826515449937920000, 53858368206010368000000, 32215590089995124736000000, 22555515290152300904448000000, 18272974787062050706056806400000, 16959604724241965811558973440000000
Offset: 2
Keywords
Programs
-
Mathematica
Table[(2 n - 1)!/(2 (n - 1)^2), {n, 2, 20}]
Formula
a(n) = (2*n - 1)!/(2*(n - 1)^2).
Sum_{n=2..oo} 1/a(n) = (e^2 - 3)/(4*e) = 0.40366087623617955676434290... . - Stefano Spezia, Jul 25 2024, simplified by Vaclav Kotesovec, Aug 19 2025
Sum_{n>=2} (-1)^n/a(n) = cos(1)/2. - Amiram Eldar, Aug 19 2025
Extensions
a(15)-a(17) from Stefano Spezia, Jul 25 2024
Comments