A138976 The discriminant of the characteristic polynomial of the O+ and O- submatrix for spin 3 of the nuclear electric quadrupole Hamiltonian is a perfect square for these values.
0, -3, -18, -45, -192, -459, -1914, -4557, -18960, -45123, -187698, -446685, -1858032, -4421739, -18392634, -43770717, -182068320, -433285443, -1802290578, -4289083725, -17840837472, -42457551819, -176606084154, -420286434477, -1748220004080, -4160406792963
Offset: 0
References
- The physics reference is G. W. King, "The Asymmetric Rotor I. Calculation and Symmetry Classification of Energy Levels", Journal of Chemical Physics, Jan 1943, Volume 11, p27-42.
Links
- Index entries for linear recurrences with constant coefficients, signature (1,10,-10,-1,1).
Crossrefs
A136331(n) = a(-n).
Programs
-
Mathematica
Do[If[IntegerQ[Sqrt[6 (6 - 3 x + x^2)]], Print[{x, Sqrt[6 (6 - 3 x + x^2)]}]], {x, -1000, 1000}]; Do[If[IntegerQ[Sqrt[6 (6 + 3 x + x^2)]], Print[{x, Sqrt[6 (6 + 3 x + x^2)]}]], {x, -1000, 1000}];
-
PARI
{a(n) = local(m); m = if( n>0, m = 1+n, -n); 3 * ((n>0) + (-1)^(n>0) * polcoeff( (x + x^2 - 5*x^3 - x^4) / ((1 - x) * (1 - 10*x^2 + x^4)) + x*O(x^m), m))} /* Michael Somos, Apr 05 2008 */
Formula
The difference equation is a[n]=11(a[n-2] - a[n-4])+a[n-6] with a[0]=0, a[1]=1, a[2]=2, a[3]=7, a[4]=16, a[5]=65. The solution is for even n: a[n]=(1/2) - (1/12)*(3+2*Sqrt[6])*(5-2*Sqrt[6])^(n/2)+(1/12)*(-3+2*Sqrt[6])*(5+2*Sqrt[6])^(n/2), for odd n a[n]=(1/2) - (1/12)*(3*Sqrt[2]+Sqrt[3])*(5-2*Sqrt[6])^(n/2)+(1/12)*(3*Sqrt[2]-Sqrt[3])*(5+2*Sqrt[6])^(n/2). Multiply the resultant sequence by 3 to generate the present sequence.
G.f.: -3*x*(1+5*x-x^2-x^3)/((1-x)*(1-10*x^2+x^4)). [Colin Barker, Aug 22 2012]
Comments