A138994 a(n) = Frobenius number for 8 successive primes = F[p(n), p(n+1), p(n+2), p(n+3), p(n+4), p(n+5), p(n+6), p(n+7)].
1, 4, 9, 16, 27, 35, 49, 63, 102, 114, 138, 150, 162, 221, 257, 275, 352, 368, 398, 424, 452, 559, 686, 633, 772, 705, 723, 747, 777, 938, 1149, 1189, 1231, 1406, 1637, 1536, 1741, 1799, 2193, 1913, 1967, 1824, 2099, 2125, 2165, 2438, 2769, 3347, 3403, 3212
Offset: 1
Keywords
Examples
a(4)=16 because 16 is the largest number k such that the equation 7*x_1 + 11*x_2 + 13*x_3 + 17*x_4 + 19*x_5 + 23*x_6 + 29*x_7 + 31*x_8 = k has no solution for any nonnegative x_i (in other words, for every k > 16 there exist one or more solutions).
Crossrefs
Programs
-
Mathematica
Table[FrobeniusNumber[{Prime[n],Prime[n + 1], Prime[n + 2], Prime[n + 3], Prime[n + 4], Prime[n + 5], Prime[n + 6], Prime[n + 7]}], {n, 1, 100}] FrobeniusNumber/@Partition[Prime[Range[100]],8,1] (* Harvey P. Dale, Aug 15 2014 *)