A139035 Primes of the form 4*k+3 with primitive root -2.
7, 23, 47, 71, 79, 103, 167, 191, 199, 239, 263, 271, 311, 359, 367, 383, 463, 479, 487, 503, 599, 607, 647, 719, 743, 751, 823, 839, 863, 887, 967, 983, 991, 1031, 1039, 1063, 1087, 1151, 1223, 1231, 1279, 1303, 1319, 1367, 1439, 1447, 1487, 1511, 1543, 1559
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Christian Elsholtz, Almost all primes have a multiple of small Hamming weight, arXiv:1602.05974 [math.NT], 2016. See p. 6.
- Jonas Kaiser, On the relationship between the Collatz conjecture and Mersenne prime numbers, arXiv preprint arXiv:1608.00862 [math.GM], 2016.
- Vladimir Shevelev, On the Newman sum over multiples of a prime with a primitive or semiprimitive root 2, arXiv:0710.1354 [math.NT], 2007.
- Vladimir Shevelev Exact exponent in the remainder term of Gelfond's digit theorem in the binary case, Acta Arithm. 136 (2009) 91-100, eq. (10).
Programs
-
Mathematica
Reap[For[p = 3, p <= 10^4, p = NextPrime[p], rp = MultiplicativeOrder[2, p]; rm = MultiplicativeOrder[-2, p]; If[rp != p-1 && rm == p-1, Sow[p]]] ][[2, 1]] (* Jean-François Alcover, Sep 03 2016, after Joerg Arndt *)
-
PARI
{ forprime (p=3, 10^4, rp = znorder(Mod(+2,p)); rm = znorder(Mod(-2,p)); if ( (rp!=p-1) && (rm==p-1), print1(p,", ") ); );} /* Joerg Arndt, Jun 03 2012 */
-
PARI
is(n)=n%8==7 && isprime(n) && znorder(Mod(-2,n))==n-1 \\ Charles R Greathouse IV, Nov 30 2017
Formula
Extensions
New name from Joerg Arndt, Jun 03 2012
Comments