A139102 Numbers whose binary representation shows the distribution of prime numbers up to the n-th prime minus 1, using "0" for primes and "1" for nonprime numbers.
1, 2, 9, 37, 599, 2397, 38359, 153437, 2454999, 157119967, 628479869, 40222711647, 643563386359, 2574253545437, 41188056726999, 2636035630527967, 168706280353789919, 674825121415159677, 43188807770570219359, 691020924329123509751, 2764083697316494039005
Offset: 1
Examples
a(4)=37 because 37 written in base 2 is 100101 and the string "100101" shows the distribution of prime numbers up to the 4th prime minus 1, using "0" for primes and "1" for nonprime numbers.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..468
- Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos.
Crossrefs
Programs
-
Maple
A139101 := proc(n) option remember ; local a,p; if n = 1 then RETURN(1); else a := 10*A139101(n-1) ; for p from ithprime(n-1)+1 to ithprime(n)-1 do a := 10*a+1 ; od: fi ; RETURN(a) ; end: # R. J. Mathar, Apr 25 2008 bin2dec := proc(n) local nshft ; nshft := convert(n,base,10) ; add(op(i,nshft)*2^(i-1),i=1..nops(nshft) ) ; end: # R. J. Mathar, Apr 25 2008 A139102 := proc(n) bin2dec(A139101(n)) ; end: # R. J. Mathar, Apr 25 2008 seq(A139102(n),n=1..35) ; # R. J. Mathar, Apr 25 2008
-
Mathematica
Table[ sum = 0; For[i = 1, i <= Prime[n] - 1 , i++, sum = sum*2; If[! PrimeQ[i], sum++]]; sum, {n, 1, 25}] (* Robert Price, Apr 03 2019 *)
-
PARI
a(n) = fromdigits(vector(prime(n)-1, k, !isprime(k)), 2); \\ Michel Marcus, Apr 04 2019
-
Python
from sympy import isprime, prime def a(n): return int("".join(str(1-isprime(i)) for i in range(1, prime(n))), 2) print([a(n) for n in range(1, 22)]) # Michael S. Branicky, Jan 10 2022
-
Python
# faster version for initial segment of sequence from sympy import isprime from itertools import count, islice def agen(): # generator of terms an = 0 for k in count(1): an = 2 * an + int(not isprime(k)) if isprime(k+1): yield an print(list(islice(agen(), 21))) # Michael S. Branicky, Jan 10 2022
Formula
a(n) = A139104(n)/2.
Extensions
More terms from R. J. Mathar, Apr 25 2008
a(20)-a(21) from Robert Price, Apr 03 2019
Comments